
AltaRica Checker Handbook
user-guide for ARC 1.7

13 March 2024

A. Griffault, G. Point, A. Vincent

This document is the manual for the ARC tool version 1.7.
Permission is granted to copy and/or distribute this document.

LaBRI - CNRS UMR 5800 - Université Bordeaux
351, cours de la Libération
F-33405 TALENCE CEDEX
FRANCE

i

Table of Contents

1 Introduction . 1
1.1 Where to get arc ? . 1
1.2 Where to send bug reports, comments or requests for new features ? 1

2 arc at a glance . 3
2.1 The game . 3
2.2 The model . 3
2.3 Getting started with arc . 4
2.4 First computations . 5
2.5 Computing the winning strategy . 7

3 The arc command . 11
3.1 Interactions with arc . 11
3.2 General purpose commands . 12

3.2.1 apropos . 12
3.2.2 cd . 12
3.2.3 echo . 13
3.2.4 eval . 13
3.2.5 exit . 14
3.2.6 gc . 14
3.2.7 help . 14
3.2.8 info . 14
3.2.9 list . 15
3.2.10 load . 16
3.2.11 pwd . 16
3.2.12 remove . 17
3.2.13 set . 17
3.2.14 show . 18
3.2.15 timer . 19

3.3 Commands related to AltaRica nodes . 19
3.3.1 ca . 19
3.3.2 depgraph . 20
3.3.3 flatten . 20
3.3.4 node-info . 21
3.3.5 obfuscate . 22
3.3.6 solve . 22
3.3.7 stepper . 23
3.3.8 target-reduction . 24
3.3.9 to-lustre . 26
3.3.10 validate . 27
3.3.11 chkctl . 28

3.4 Commands related to computations using exhaustive engine . 28
3.4.1 ts . 28
3.4.2 ts-marks . 29
3.4.3 show-ts-marks . 29

3.5 Commands related to Mec 5 relations . 29
3.5.1 card . 29

ii

3.5.2 check-card . 30
3.5.3 pick . 31
3.5.4 store . 31

3.6 Computation of sequences and fault trees: cuts and sequences 33
3.7 Stochastic simulation: sas . 35
3.8 Experimental commands . 37

3.8.1 diag . 37
3.8.2 sat . 37

4 Using the Acheck specifications . 39
4.1 Overview . 39
4.2 Representation of the semantics . 40
4.3 Computing properties of nodes . 40

4.3.1 Built-in sets . 40
4.3.1.1 Sets of configurations . 41
4.3.1.2 Sets of transitions . 41

4.3.2 Operators . 42
4.3.3 Using CTL* logic . 44

4.4 Commands . 45

5 Using the Mec 5 specifications . 49
5.1 Writing Mec 5 predicates . 49
5.2 Built-in Mec 5 relations . 51

6 Stochastic simulation . 55
6.1 Stochastically Timed AltaRica . 55
6.2 Pre-requisites on models . 56
6.3 Syntax of extern clauses . 56
6.4 Clauses for stochastic simulation . 57

6.4.1 Parameters . 57
6.4.2 Laws . 58
6.4.3 Observers . 59
6.4.4 Memorization of delays . 59
6.4.5 Priority . 59
6.4.6 Random choices . 59

6.5 Example . 60

7 Altarica Studio . 63
7.1 Validation tools . 63
7.2 Simulator . 66

8 References . 69

Appendix A User preferences . 71
A.1 Shell . 71
A.2 Acheck . 72
A.3 Mec V . 72
A.4 Translation of AltaRica models into Lustre programs . 72
A.5 Translation of Lustre programs into AltaRica models . 74

iii

Appendix B Probabilistic laws . 79
B.1 Dirac’s law . 79
B.2 Empiric law . 79
B.3 Erlang’s law . 79
B.4 Generalized Erlang’s law . 80
B.5 Exponential law . 80
B.6 Exponential law + Wait On Weather delays . 80
B.7 Instants Provided in Advance . 81
B.8 Instants Fixed in Advance . 81
B.9 Log Normal law . 81
B.10 Optional laws . 82
B.11 Triangular law . 82
B.12 Uniform law . 83
B.13 Weibull’s law . 83
B.14 Truncated Weibull’s law . 84

Chapter 1: Introduction 1

1 Introduction

arc is a toolbox for the AltaRica language ([agp99], page 69). The main purpose of arc is the
model-checking of systems described with AltaRica but its aim is to gather several tools for
the analysis or compilation of AltaRica models. arc gathers works realized on two suites of
tools: Acheck and Mec 5 ([av03], page 69). The current version offers the following features:

• The original AltaRica language has been extended with:

• compound types (arrays, structures).

• the definition of abstract types and signatures of functions (not supported by the
model-checking engine).

• Acheck specifications are supported using explicit or symbolic representation of the state-
spaces (however not all the set of commands are supported in both encoding).

• ctl∗ formulae can be used in place of fixed-point equations.

• Mec 5 ([av03], page 69) specifications are also supported and are handled using Decision
Diagrams (those used within the Toupie tool [cr97], page 69). arc extends the set of
predefined sets with, for instance, N!reach that specifies the set of reachable configurations
of the node N.

• arc package integrates a small GUI hymbly called AltaRica Studio that implements a
graphical simulator.

• Large relations can be serialized in binary files for future use.

• Preprocessors can be specified using the configuration file of ARC.

• Translators for the Lustre language (see [gp06], page 69).

• Several algorithms have been implemented to generate sets of sequences or fault trees ac-
cording to an unexpected configuration [akpv11], page 69.

• A simulator for models decorated with stochastic informations; it permits to evaluate some
measure such like mttf (mean time to failure).

1.1 Where to get arc ?

The AltaRica website, http://altarica.labri.fr, housed at LaBRI gathers many informa-
tions related to the AltaRica language. In particular you will find how to download the arc
tarball or the URL of the repository that contains its source code.

1.2 Where to send bug reports, comments or requests for new
features ?

Bug reports, comments or any new feature requests can be sent to altarica@groupes.renater.
fr. You can also use the contact form of the Support section at AltaRica website.

http://altarica.labri.fr
http://www.labri.fr
altarica@groupes.renater.fr
altarica@groupes.renater.fr

Chapter 2: arc at a glance 3

2 arc at a glance

In this chapter we present a small session with arc. We do not present all features of the tool;
we refer the reader to next chapters for details. Here we simply show the basics of commands and
interactions with arc while studying a game between two opponents. We use arc to compute
a winning strategy for one of the two players.

2.1 The game

We consider a game with two players, say A and B. Player A has four coins and each coin has
two different sides. Player A arranges coins as a square and chooses which side of each coin is
visible. B never sees the current side of coins. Each turn of the play, B requests A to change
the side of either

• one coin,

• one column or one line of coins,

• or one diagonal.

Each request can be satisfied in different ways by A; for instance, when B says “one coin”,
A has four possibilities. Since B does not see coins, he can not know the choice made by its
opponent. B wins the game if all coins are on the same side. Of course A has to make his
possible to prevent B to reach one of the two winning situations. We assume that A is honnest
enough to end the game when he looses.

Our goal in this chapter is to use arc to find a strategy for player B that is winning from
all configurations of the game.

2.2 The model

The board game (i.e. the coins arranged as a square) is easily described with an AltaRica
node.

• First we define a domain SIDE for values that model sides of coins; Booleans could be a
good choice but integers 0 and 1 ease the description of properties.

• Then we declare a node Board where:

• the four coins are modeled with a two-dimensional array c of values in SIDE.

• the three requests of the player B are modeled with three events called one, col_or_
line and diagonal.

• the response of A is modeled using transitions. The non-deterministic choices made by
A is straitghforward since AltaRica allows non-determinism on event occurrences.

We store the AltaRica model of the game into a file called game.alt. The content of the
file is given below. In the following lines $ denotes the prompt of the shell program (e.g. bash).

$ cat game.alt

domain SIDE = [0,1];

#define FLIP(i,j) c[i][j] := ((c[i][j] + 1) mod 2)

node Board

state c : SIDE[2][2];

event one, col_or_line, diagonal;

trans

true |- one -> FLIP(0, 0);

true |- one -> FLIP(0, 1);

true |- one -> FLIP(1, 0);

true |- one -> FLIP(1, 1);

Chapter 2: arc at a glance 4

true |- col_or_line -> FLIP(0, 0), FLIP(1, 0);

true |- col_or_line -> FLIP(0, 1), FLIP(1, 1);

true |- col_or_line -> FLIP(0, 0), FLIP(0, 1);

true |- col_or_line -> FLIP(1, 0), FLIP(1, 1);

true |- diagonal -> FLIP(0, 0), FLIP(1, 1);

true |- diagonal -> FLIP(0, 1), FLIP(1, 0);

edon

$

A reader used to AltaRica language should have noticed that the third line of the file is
not an AltaRica sentence. Indeed, it is the definition of a macro-function FLIP(i,j) for the
C preprocessor. This macro-function is a shortcut used in transitions to flip the coin at line i

and column j. We come back on preprocessing in the next section.

2.3 Getting started with arc

Now that we have written the model of the game we just have to start arc and load the
file game.alt. arc accepts several options followed by filenames (see Chapter 3 [The ARC
command], page 11, for details on options). We start the program with the file game.alt as
argument (the ellipsis below replaces the banner of arc). Inputs of the user are written using
a typewriter font and arc outputs are printed using italic font.

$ arc game.alt

...

Loading file ’game.alt’.

game.alt:3: error: syntax error on symbol ’#’ (any text mode).

arc>

Oups! Things does not start very well because the AltaRica parser founds an error in
the file. The error occurs on the first character of the C preprocessor line that defines the
macro-function FLIP(i, j).

By default preprocessing of files is disabled; this yields to a syntax error on line 3. To
enable it we use the command set (see [set command], page 17), to specify in the preference
variable arc.shell.preprocessor.default.command which preprocessor we want to use by
default (here cpp):

arc>set arc.shell.preprocessor.default.command "/usr/bin/cpp"

arc>

Note that the value of preferences are lost between sessions unless the user requests arc to
store them into its configuration file (i.e. ~/.arcrc). To save preferences, use the option -save

of the set command. (See Appendix A [User preferences], page 71, for existing customization
variables.)

Now we can reload game.alt. If we display the node Board (using [show command], page 18)
we can see substitutions realized by the preprocessor:

arc>load game.alt

Loading file ’game.alt’.

arc>show Board

node Board

state

/* 1 */ c : [0, 1][2][2];

event

/* 1 */ ’$’;
/* 2 */ diagonal;

/* 3 */ col_or_line;

/* 4 */ one;

trans

true |- one -> ’c[0][0]’ := (’c[0][0]’+1) mod 2;

true |- one -> ’c[0][1]’ := (’c[0][1]’+1) mod 2;

true |- one -> ’c[1][0]’ := (’c[1][0]’+1) mod 2;

true |- one -> ’c[1][1]’ := (’c[1][1]’+1) mod 2;

Chapter 2: arc at a glance 5

true |- col_or_line -> ’c[1][0]’ := (’c[1][0]’+1) mod 2, ’c[0][0]’ := (’c[0][0]’+1) mod 2;

true |- col_or_line -> ’c[1][1]’ := (’c[1][1]’+1) mod 2, ’c[0][1]’ := (’c[0][1]’+1) mod 2;

true |- col_or_line -> ’c[0][1]’ := (’c[0][1]’+1) mod 2, ’c[0][0]’ := (’c[0][0]’+1) mod 2;

true |- col_or_line -> ’c[1][1]’ := (’c[1][1]’+1) mod 2, ’c[1][0]’ := (’c[1][0]’+1) mod 2;

true |- diagonal -> ’c[1][1]’ := (’c[1][1]’+1) mod 2, ’c[0][0]’ := (’c[0][0]’+1) mod 2;

true |- diagonal -> ’c[1][0]’ := (’c[1][0]’+1) mod 2, ’c[0][1]’ := (’c[0][1]’+1) mod 2;

true |- ’$’ -> ;

// assertion is (implicitly) ’true’.

// no initial assignment is specified.

// no initial constraint is specified.

edon

arc>

One can notice the presence of an additional event ’$’ and a transition true |- ’$’ -> .
This is the well-known ε event and its associated transition that are added implicitly by the
AltaRica semantics.

2.4 First computations

Our goal is to compute a strategy that is winning from all positions of coins. The size of the
state-space of the game (16 configurations) is reasonable enough to be displayed. To do this we
use Acheck commands (see Chapter 4 [Using the Acheck specifications], page 39). Rather than
creating a new file containing these commands we use [eval command], page 13, that redirects
the standard input of the program to the AltaRica parser. EOF is used to close Acheck mode.

arc>eval

eval>with Board do

dot(any_s, any_t) > "game.dot";

done

EOF

arc>

The with ... do ... done sentence specifies that arc has to apply commands listed between
the do and done keywords to each nodes listed between with and do. Before executing commands
arc computes the semantics of the node and then applies commands to the semantics.

Here we apply to Board the command dot (see Section 4.4 [Commands], page 45). This latter
displays the state graph of the node using GraphViz file format (i.e. for the dot tool - [dot],
page 69). The two keywords any_s and any_t simply said that all states and all transitions have
to be displayed (sometimes it is interesting to restrict these two sets e.g. for counterexamples).

The output of the command is redirected into a file called game.dot. Using the dot tool of
GraphViz we obtain the following graph:

c[0][0]=0,c[0][1]=0,c[1][0]=0,c[1][1]=1

c[0][0]=0,c[0][1]=1,c[1][0]=1,c[1][1]=1

diagonal

c[0][0]=1,c[0][1]=0,c[1][0]=0,c[1][1]=0

diagonal

c[0][0]=0,c[0][1]=0,c[1][0]=1,c[1][1]=0

col_or_line

c[0][0]=1,c[0][1]=1,c[1][0]=0,c[1][1]=1

col_or_line

c[0][0]=0,c[0][1]=1,c[1][0]=0,c[1][1]=0

col_or_line

c[0][0]=1,c[0][1]=0,c[1][0]=1,c[1][1]=1

col_or_line

c[0][0]=0,c[0][1]=0,c[1][0]=0,c[1][1]=0

one

c[0][0]=0,c[0][1]=0,c[1][0]=1,c[1][1]=1

one

c[0][0]=0,c[0][1]=1,c[1][0]=0,c[1][1]=1

one

c[0][0]=1,c[0][1]=0,c[1][0]=0,c[1][1]=1

one

diagonal

col_or_line

col_or_line

col_or_line

col_or_line

one

one

c[0][0]=1,c[0][1]=1,c[1][0]=1,c[1][1]=1

one

c[0][0]=1,c[0][1]=1,c[1][0]=1,c[1][1]=0

diagonal c[0][0]=0,c[0][1]=1,c[1][0]=1,c[1][1]=0

one

diagonal

col_or_line

col_or_line

col_or_line

col_or_line

one

one

c[0][0]=1,c[0][1]=0,c[1][0]=1,c[1][1]=0

one

c[0][0]=1,c[0][1]=1,c[1][0]=0,c[1][1]=0

one

diagonal

col_or_line

col_or_line

col_or_line

diagonal

diagonal

one

one

one

col_or_line

one

col_or_line

col_or_line

col_or_line

diagonal

diagonal

one

one

one

one

col_or_line

col_or_line

col_or_line

col_or_line

diagonal

diagonal

one

one

one

col_or_line

one col_or_line

col_or_line

col_or_line

diagonal

diagonal

one

one

one

one

col_or_line

one

one

one

one

col_or_line

col_or_line

diagonal

col_or_line

col_or_line

diagonal

one

one

one

one

col_or_line

diagonal

col_or_line

col_or_line

diagonal

col_or_line

one

one

one

one

col_or_line

diagonal

col_or_line

col_or_line

diagonal

col_or_line

one

one

one

one

diagonal

col_or_line

col_or_line

diagonal

col_or_line

col_or_line

one

one

one

col_or_line

col_or_line

diagonal

col_or_line

col_or_line

one

diagonal

one

one

one

col_or_line

diagonal

col_or_line

col_or_line

diagonal

one

col_or_line

one

one

one

col_or_line

diagonal

col_or_line

col_or_line

diagonal

one

col_or_line

diagonal

diagonal

col_or_line

col_or_line

col_or_line

col_or_line

one

one

one

one

one

one

one

diagonal

col_or_line

col_or_line

diagonal

col_or_line

col_or_line

one

Despite its small size this graph is not very instructive. arc possesses another command,
called quot, that outputs the state-graph (yet in dot format) but this time, states are gathered
according to the greatest auto-bisimulation that respects currently computed properties.

Chapter 2: arc at a glance 6

arc>eval

eval>with Board do

quot() > "game_q0.dot";

done

EOF

arc>

As shown on the following figure the generated graph is not more interesting than the previous
one. Up to now no properties have been computed and since all events are possible from all
states the greatest auto-bisimulation is the identity.

�������������������

�� ����������������������

In order to refine the result we compute small properties that will label states:

• O is the set of states where only one coin is either 0 or 1;

• CL is the set of states where coins form columns or lines;

• D is the set of states where coins form diagonals;

• and finally, W is the set of states that are winning for B.

These properties are simply written “X := φ” where X is the name of the set and φ is an
Acheck formula. In our example properties are related to values of coins. When we have
to talk about the values of variables one writes the corresponding Boolean expression between
square-brackets. For instance, winning states (the set W) are those for which all coins display
the side 0 or all display the side 1; the corresponding formula for this set can be that the sum
of values that label coins is either 0 or 4.

arc>eval

with Board do

W := [c[0][0] + c[0][1] + c[1][0] + c[1][1] = 0 or

c[0][0] + c[0][1] + c[1][0] + c[1][1] = 4];

O := [c[0][0] + c[0][1] + c[1][0] + c[1][1] = 1 or

c[0][0] + c[0][1] + c[1][0] + c[1][1] = 3];

CL := [c[0][0] + c[1][0] = 2 and c[0][1] + c[1][1] = 0 or

c[0][0] + c[1][0] = 0 and c[0][1] + c[1][1] = 2 or

c[0][0] + c[0][1] = 2 and c[1][0] + c[1][1] = 0 or

c[0][0] + c[0][1] = 0 and c[1][0] + c[1][1] = 2];

D := [c[0][0] + c[1][1] = 2 and c[1][0] + c[0][1] = 0 or

c[0][0] + c[1][1] = 0 and c[1][0] + c[0][1] = 2];

show (all);

quot() > "game_q1.dot";

done

EOF

/*

* Properties for node : Board

* # state properties : 5

*

* CL = 4

* D = 2

* O = 8

* W = 2

* any_s = 16

*

* # trans properties : 1

Chapter 2: arc at a glance 7

*

* any_t = 176

*/

arc>

Before the output of the quot command into the file game_q1.dot we call the command show

that displays the cardinalities of currently computed properties. The parameter all indicates
that all known properties have to be displayed. This keyword can be replaced by a coma-
separated list of property identifiers.

The reader can notice that some properties that was not specified have been computed. In
fact, several properties are pre-defined in Acheck (see Section 4.3.1 [Built-in sets], page 40)
and computed if necessary (e.g. any_s).

The new graph obtained with the quot command is displayed below.

�������������������

��
��
��
��
��
��
��
��

�������������������

��
��
��
��

���

��
��

���

��
��

���

���

��������

�����������

����������� ���

�����������

��������

���

�����������

��������

This graph shows that the game would have been modeled with only four configurations. Indeed
sides of coins (0 and 1) play symetrical roles and only arrangements of coins (i.e. lines, columns,
. . .) are relevant rather than their actual position.

Even if the graph is simpler than the previous one, the winning strategy remains unobvious1.

2.5 Computing the winning strategy

To check the existence of the winning strategy we use Mec 5 specifications (see Chapter 5 [Using
the Mec 5 specifications], page 49). The logic of Mec 5 permits to easily write formulas that
talk about individual configurations and events rather than sets of configurations and transitions
as in the Acheck language.

Mec 5 specifications are essentially a list of relations (or predicates) definitions. The first
one we define is the unary relation that contains all configurations that are winning for B.

arc>eval

eval>Win(s : Board!c) :=

s.c[0][0] + s.c[1][0] + s.c[0][1] + s.c[1][1] = 0 or

s.c[0][0] + s.c[1][0] + s.c[0][1] + s.c[1][1] = 4;

EOF

Win (s : Board!c) : 2 elements / 7 nodes

arc>

1 However, with a little effort it is easy to get it!

Chapter 2: arc at a glance 8

This declaration starts with the signature of the relation : its identifier (Win) and the name
and type of each columns (here s of type Board!c). Board!c is the type of configurations of the
node Board. The prototype is then followed by a first order formula whose models are elements
of the defined relation. The formula can refer to the relation itself (i.e. the relation is defined
recursively) in which case its models are elements of the underlying fixed-point. We refer the
reader to Chapter 5 [Using the Mec 5 specifications], page 49, for details on the syntax and
semantics of the Mec 5 logic. Note that, since version 1.6, relations computed using Acheck
logic are available in Mec 5 formulas using ! notation; for instance, here we could use Board!W

instead of defining the relation Win.

If arc has not been started in quiet mode (i.e. with the -q option) it displays the cardinality
of the relation once its computation is done. To display the number of elements of a relation,
use [card command], page 29:

arc>card Win

card (Win) = 2

arc>

Mec 5 specifications does not permit to talk about sequences of arbitrary length. To compute
the result we enumerate possible lengths of strategies until we found at least one.

We first define a relation WSeqk (k > 0) with k+1 arguments : a configuration s and k events
ei for i = 1, . . . , k. A vector 〈s, e1, . . . , ek〉 belongs to WSeqk if and only if the sequence e1, . . . , ek
is executed from the configuration s and the game passes through a winning configuration:

• For k = 1, the relation is simply:

WSeq1(s : Board!c, e1 : Board!ev) :=

Win(s) or

[t : Board!c] (Board!t (s,e1,t) => Win (t));

• For any k > 1, the relation is defined using WSeqk−1:

WSeqk
(s : Board!c, e1 : Board!ev, ..., ek
: Board!ev) :=

Win(s) or

[t : Board!c] (Board!t (s, e1, t) => WSeqk−1
(t, e2, ..., ek

));

The relation Sk that contains winning strategy of length k is a k-ary relation whose arguments
are events ei for i = 1, . . . , k. Its definition simply expresses that the sequence of events is winning
from all configurations:

Sk
(e1 : Board!ev, ..., ek
: Board!ev) :=

[s : Board!c] WSeqk
(s, e1, ..., ek

);

These relations, WSeqk and Sk, have been written until Sk becomes non-empty; we gathered
them into a file game.mec5. The first non-empty relation is S7 and is a singleton:

arc>load game.mec5

Loading file ’game.mec5’.

card (Win) = 2

card (S1) = 0

card (S2) = 0

card (S3) = 0

card (S4) = 0

card (S5) = 0

card (S6) = 0

card (S7) = 1

arc>show S7

e1. = diagonal, e2. = col_or_line, e3. = diagonal, e4. = one, e5. = diagonal,

Chapter 2: arc at a glance 9

e6. = col_or_line, e7. = diagonal

arc>

The reader can use the step-by-step simulator of AltaRica studio (see Section 7.2 [Simu-
lator], page 66) to try to win against the strategy given by the relation S7 ...

Chapter 3: The arc command 11

3 The arc command

arc has been designed as a command-line tool like shell programs used on Unix-like systems
(e.g. bash or csh). If you execute the arc command, the program simply displays a welcome
banner and the prompt arc>:

$ arc

arc 1.7.0

Copyright (c) 2002-2018 LaBRI - CNRS & University of Bordeaux.

All rights reserved.

This software is distributed under AltaRica Public License (see COPYING file).

Please report any bug to altarica[at]groupes.renater.fr

or on project webpage http://altarica.labri.fr/

arc>

The user can add arguments to the arc command. An argument that starts with a dash (-)
is considered as an option; an argument that is not an option is considered as a filename. The
current version of arc allows the following options:

-b This option indicates that arc is used in batch mode i.e. it exits after the interpre-
tation of all its arguments (files and options).

-c script This option indicates to arc that the next argument, script, should be interpreted
as a list of arc commands.

-d This option exists only for debugging purposes; it enables the display of many ugly
messages.

-h or --help

Display the general syntax of arc command-line arguments and the list of allowed
options.

-q This option specifies that arc should be run in a quiet mode i.e. eliminating ver-
bose informating messages. In particular this option disables the display of the
“Welcome” banner.

-x This option enables enable command/response mode. This mode is used by GUI
AltaRica studio. It implements a small query/response protocol.

-V or --version

This option displays the current version of arc. If -q is not specified it prints out
compilation options and many other data related to the current version in use.

3.1 Interactions with arc

Depending of the installation host the arc prompt might be compiled using the readline
library ([rl], page 69) or not. This library is now used by many prompt-based programs (e.g.
Unix shells) to ease interactions with the user.

The readline library memorizes commands executed by the user. When arc exits this
history is stored into a file named by default ~/.arc_history but it can be changed using
user preferences (see Appendix A [User preferences], page 71)). The next time arc is started
interactively, this file is reloaded and the user gets back commands of its previous session.

Each command is essentially the identifier of the command followed by its arguments. A
semi-colon (;) can be used to separate several commands entered on the same command line.
For instance, below three commands are executed from the same command line: the first one
defines a new relation R, the second command displays the cardinality of R and the last one
outputs elements of R.

Chapter 3: The arc command 12

arc>eval EOF; card R ; show R

eval>R(i : [0,10]) := <n : [0,10]>(i = 3 * n);

eval>EOF

R (i : [0, 10]) : 4 elements / 2 nodes

card (R) = 4

i = 0

i = 3

i = 6

i = 9

The reader familiar with previous version of arc should have noticed that eval is used in a
different way (see [eval command], page 13).

Outputs of commands can be redirected into a file or into a pipe to another program. This
mechanism uses the same notation than the one used by Unix shells:

• cmd arg1 . . . argn > filename outputs the results of the command cmd into the file called
filename. If filename does not exist it is created; else, it is made empty and overwritten.

• cmd arg1 . . . argn >> filename outputs the results of the command cmd at the end of the
file called filename. If filename does not exist it is created.

• cmd arg1 . . . argn | ”program progarg1 ... progargn” outputs the results of the command
cmd to the standard input of program executed with arguments progargi. For instance

apropos preferences | more

should display the list of user preferences using the pager command more.

3.2 General purpose commands

3.2.1 apropos

Looks for a keyword in arc internal documentation.

Synopsis:

apropos keyword

Description:

This command looks for a keyword in arc internal documentation and lists all the
available topics related to it. Topics can then be consulted using the [help command],
page 14.

Example :

arc>apropos apropos

Topics related to ’apropos’:

help - Display help informations about given topics.

apropos - Looks for a keyword in ARC internal documentation.

set - Lists/sets/saves/loads preferences.

commands - Command list

pages - List of help pages

3.2.2 cd

Change current working directory.

Synopsis:

cd path

Description:

This commmand simply changes the current working directory of arc to path. This
directory can be displayed using [pwd command], page 16.

Chapter 3: The arc command 13

3.2.3 echo

Write its arguments on standard output.

Synopsis:

echo arg1 . . . argn

Description:

Print arguments on standard output; arguments are separated by space characters.
Example :

arc>echo "This is a test"

This is a test

arc>

3.2.4 eval

Interpret given arguments or standard input as it would be by the load command.

Synopsis:

eval text1 text2 . . . : Interprets each text1 text2 . . .

eval : Reads and interprets text from the standard input until the word EOF is read
at the begin of the line or an end of file character e.g. CTRL-D).

eval txt : Reads and interprets text from the standard input until the word txt is read
at the begin of the line or an end of file character e.g. CTRL-D).

Description:

This command interprets strings given as arguments or the characters typed on the
standard input. Strings might be either an AltaRica text, Mec 5 equations or
Acheck commands. If no argument is passed to the command then the standard
input stream is interpreted.

Example 1 : Definition of an integer constant. ARC rejects redefinition of constants.

arc>eval

eval>const N : integer = 3;

eval>EOF

arc>eval

eval>const N : integer = 3;

eval>EOF

<eval>:1: error: redefinition of constant ’N’.

arc>

arc>show N

const N : integer = 3;

arc>

Example 2 : Evaluation of a Mec 5 predicate where the constant N is used (^D means
CTRL-D).

arc>eval

eval> R(x : [0,10]) := <y : [0,10]> (x = N * y);

eval> ^D

R (x : [0, 10]) : 4 elements

arc>show R

R contains :

x = 0

x = 3

x = 6

x = 9

arc>

Chapter 3: The arc command 14

3.2.5 exit

Quit the arc program.

Synopsis:

exit

quit

Terminates the arc session.

Description:

This command requests arc for normal termination. Modified preferences are not
saved when the program terminates. If you want to keep your settings for next sessions
use [set command], page 17 with the -save option.

3.2.6 gc

Calls garbage collector of the Decision Diagram engine.

Synopsis:

gc

Description:

This command explicitly calls the garbage collector of DDs.

3.2.7 help

Display help about ARC commands or syntax.

Synopsis:

help : With no argument the command is equivalent to ’help help’

help topic : Displays informations related to topic

Description:

This command is the companion of [apropos command], page 12 in the internal docu-
mentation of arc. This command displays help informations about a given topic. Use
command apropos to look for topics related to some keyword.

You can also type help pages to get a list of all available help pages.

For long help messages you should pipe the help command with a shell command like
more or less.

3.2.8 info

Display detailed informations related to specified objects.

Synopsis:

info D id1 id2 . . . :

Displays information about objects identified by id1, id2, . . . in dictionary D where
D is one of the following name: constants, domains, nodes, signatures, relations,
dd-assignments, dd-all-paths, or order.

Description:

For each given identifier, the command displays informative data related to the object.
arc looks for identifiers into its table D ; a prefix can be used to specify the table
e.g const for constants. If no identifier is given, the command displays informations
about all known objects.

Available dictionaries/tables are the following:

Chapter 3: The arc command 15

constants

The command returns informations related to declared (global) constants
of the model.

domains The command returns informations related to declared (global) domains
of the model.

dd-all-paths

Identifiers are names for Mec 5 relations. The command display the DD
encoding the relations in dot format. All paths from the root to leaves
are displayed.

dd-assignments

Identifiers are names for Mec 5 relations. The command display the DD
encoding the relations in dot format. Only paths from the root to the
positive leaf > are displayed.

nodes For each specified AltaRica node, the command displays its different
dimensions (i.e. its number of variables, events, . . .) and its hierarchy.
Since they are not instantiated, no information is displayed for templates.

order For specified Mec 5 relations, the command gives the order on variables
used to compute its decision diagram.

relations

Identifiers are names of relations. For each one, the command displays
the signature of the relation, its size (i.e., its number of elements) and the
number of nodes of its underlying decision diagram.

signatures

The command recalls the prototype of the specified signatures.

Example : Below we create a new relation R. The command info displays the signature
of the relation, its cardinality and the size of the data structure (i.e. the number of
nodes of the DD) used to store it.

arc>list all

arc>eval

eval>R(x :[1,4]) += x <= 2;

eval>EOF

R (x : [1, 4]) : 2 elements

arc>list all

defined relations : R

arc>info rel R

R : [1, 4] -> bool

cardinality : 2

data structure size : 2

arc>

See also [list command], page 15.

3.2.9 list

Lists existing objects.

Synopsis:

list kinds : Gives the list of supported sets of objects.

list all : List all existing objects gathered by kinds.

list kindname : List all objects of kind ’kindname’

Description:

Chapter 3: The arc command 16

This command gives the list of identifiers of existing objects: constants, domains,
nodes, root-nodes, signatures, relations, commands.

To display a specific object, use the [show command], page 18 or try [info command],
page 14.

arc>list all

arc>eval

const NB_ELEMENTS = 3;

const MIN_VALUE = 1;

const MAX_VALUE = MIN_VALUE + NB_ELEMENTS - 1;

domain R = [MIN_VALUE, MAX_VALUE];

rel(s : R, t : R) := s = t;

eval>EOF

rel (s : [1, 3], t : [1, 3]) : 3 elements / 5 nodes

arc>list all

defined constants : MAX_VALUE, MIN_VALUE, NB_ELEMENTS

defined domains : R

defined relations : rel

arc>

3.2.10 load

Load the specified files.

Synopsis:

load file1 file2 . . .

Open and interpret files file1, file2, . . . All files are processed even if an error occurs
in one of them.

Description:

This command is used to load into memory AltaRica models, Acheck or Mec 5
specifications, Lustre programs (some restriction are applied, see [gp06], page 69 for
details), DD encoded relations (see [store command], page 31) or arc scripts files.
The parser is selected according to the file extension.

• If the file terminates with .arc then it is interpreted as an ARC script.

• If the file terminates with .lus then it is interpreted as a Lustreprogram and is
automatically translated into AltaRica.

• If the file terminates with .rel then it is interpreted as a serialized DD encoding
a relation.

• In other cases the file is passed to the parser used for AltaRica, Acheck, Mec 5
and arc scripts (these languages share the same parser).

For the latter case, the user can specify a preprocessing tool; see [arc.shell.preprocessor],
page 71.

3.2.11 pwd

Display current working directory.

Synopsis:

pwd

Description:

This commmand outputs the current working directory from where arc executes its
commands. To change it [cd command], page 12 must be used.

Chapter 3: The arc command 17

3.2.12 remove

Remove resources allocated to specified objects.

Synopsis:

remove D id1 id2 . . .

Remove objects identified by id1, id2, . . . in dictionary D .

remove D all

Remove all objects in dictionary D .

remove all

Remove all objects in all dictionaries.

Description:

For each given identifier, the command releases resources used by the associated object.
Identifiers are related to some namespace or dictionary belonging to the following list:
constants, domains, nodes, signatures or relations. Prefix of these names can be
used.

Example :

arc>list relations

defined relations :

arc>eval

eval>R(x :[1,4]) += x <= 2;

eval>EOF

R (x : [1, 4]) : 2 elements / 2 nodes

arc>list rel

defined relations : R

arc>remove relation R

arc>list rel

defined relations :

3.2.13 set

Lists/sets/saves/loads preferences.

Synopsis:

set : With no argument the command lists all existing preferences with their current
value.

set id : Displays the current value of the preference named id .

set id value: Changes the current value of preference named id .

set -save: Requests arc to store all preferences into the configuration file (~/.arcrc).

set -load: Forces arc to reload preferences from its configuration file. Table of
preferences is not reset.

Description:

The behavior of arc’s commands is influenced by some preferences (or customization
options) that the user can modify. This preferences are simply couples (name,value).
The set command permits to change or to display the value assigned to such options.

Modified preferences are not kept between arc sessions. To be persistent changes must
be explicitly stored into the configuration file ~/.arcrc. The values are saved using
the option -save. During a session, values stored into the configuration file might be
reloaded using the -load option.

Example : The following examples changes the value of arc.shell.prompt.0 that
defines the prompt of arc. Then arc is restarted and one can see that the normal
prompt is back.

Chapter 3: The arc command 18

$ arc -q

arc>set arc.shell.prompt.0

arc.shell.prompt.0 = arc>

arc>set arc.shell.prompt.0 "bow> "

bow> set arc.shell.prompt.0

arc.shell.prompt.0 = bow>

bow> ^D

$ arc -q

arc>set arc.shell.prompt.0

arc.shell.prompt.0 = arc>

Using -save we store the new prompt into the configuration file.

arc>set arc.shell.prompt.0 "bow>"

bow>set -save

bow>^D

$ cat ~/.arcrc | grep prompt.0

arc.shell.prompt.0 = bow>

$ arc -q

bow>

To get informations about existing preferences and their possible values, type help

preferences and/or pipe the command with an ad hoc call to grep command; you
can also try [apropos command], page 12.

Example :

arc>help preferences | "grep timers"

acheck.timers :

Enable/disable timers for acheck computations.

mec5.timers :

Enable/disable timers for MEC 5 computations.

Enable/disable the display of timers for acheck computations

arc>apropos timers

Topics related to ’timers’:

preferences - User preferences

cuts - Computation of sets of scenarios

set - Lists/sets/saves/loads preferences.

timer - Measurement of execution times for ARC commands

a2l-preferences - Options for Altarica-To-Lustre translator

arc>

3.2.14 show

Display specified objects.

Synopsis:

show id1, . . .

Display objects identified by idi

Description:

The command looks for an object (relation, signature, . . .) with identifier idi and
displays it. If several objects have the same identifier then all are displayed.

Example :

arc>eval

eval>R(x :[1,4]) += x <= 2;

eval>EOF

R (x : [1, 4]) : 2 elements

arc>list relations

defined relations : R

arc>show R

x in [1, 2]

arc>

Chapter 3: The arc command 19

3.2.15 timer

Timers to measure CPU time.

Synopsis:

timer: Lists existing timers

timer start timer-id : Starts the timer timer-id ; if it does not exists it is created.

timer reset timer-id : Stop and reset accumulated time for the timer timer-id .

timer stop timer-id : Stops timer timer-id . Elapsed CPU time since last start is
accumulated.

timer elapsed timer-id : Displays current elapsed CPU time since last start of timer
timer-id .

timer print timer-id : If timer timer-id is stopped, displays accumulated time since
creation or last reset) of the timer.

timer remove timer-id : Releases ressources allocated to and unregisters timer timer-id .

Description:

This command permits to create timers. Timers measure CPU time and not calendar
time. Each one is identified by a name specified at creation and recalled each time a
value of the timer is displayed. Two values are associated to each timer:

1. the current elapsed CPU time since the last start command;

2. the total amount of CPU time accumulated since the last reset or since the
creation of the timer.

A timer is created and started using the start command. The identifier specified at
creation is reused when values of the timer are displayed; if the name of the timer is not
a simple word then it must be enclosed between double-quotes (”). stop subcommand
permits to temporarily suspend the timer and to store time elapsed since start into
the accumulator; the value of this accumulator can be displayed using print. elapsed
permits to display elapsed time since the last start without stopping the timer. Finally
reset subcommand stops the timer and reset its accumulator to 0.

Example :
arc>timer start "My Timer"

arc>eval

eval>R(s : [0,100], t : [0,100]) := s = 2*t;

eval>R (s : [0, 100], t : [0, 100]) : 51 elements / 53 nodes

arc>timer elapsed "My Timer"

elapsed (My Timer) = 0.030

arc>timer

My Timer

arc>timer remove "My Timer"

arc>timer

arc>

3.3 Commands related to AltaRica nodes

3.3.1 ca

Compute and display the constraint automaton (i.e. its semantics) of the given node.

Synopsis:

ca [--mec] node-id1 . . . node-idn : Displays constraint automata of nodes node-id i

Description:

This command computes and displays the constraint automaton that corresponds to
the flat semantics of the node identified by node-id i. The main difference between

Chapter 3: The arc command 20

the commands ca and flatten is the removal of compound types (i.e. structures and
arrays) and quantified formulas in the constraint automaton.

If the option --mec is specified, dot notation (.) used to separate fields of a structure
is replaced by ^.

See also [flatten command], page 20.

3.3.2 depgraph

Displays informations related to dependency graph of a constraint automaton.

Synopsis:

depgraph [--option]* node-id

where option can be: constraints, dot-func-deps, func-deps, no-dep-graph,
trans-assert, trans-classes, with-events or --with-func-deps.

Description:

This command displays informations about existing denpendencies between objects
that compose the constraint automaton of node node-id . By default the command
outputs dependency graph between all objects except events (i.e., assertions, transitions
and variables) in dot file format.

Several options can be specified:

. --constraints: display assertions that have not been converted into functional
dependencies;

. --dot-func-deps: display functional dependencies in dot file format;

. --func-deps: display discovered functional dependencies;

. --no-dep-graph: disable the output of the whole dependency graph;

. --trans-assert: displays for each macro-transitions the list of assertions that
influence its enabling condition;

. --trans-classes: displays for strongly-connected component of the dependency
graph restricted to transitions;

. --with-events: add events to dependency graph

. --with-func-deps: replace assertions with discovered functional dependencies.

3.3.3 flatten

Compute and display flat semantics of given nodes.

Synopsis:

flatten id1 id2 . . . Display, for each id1, id2, . . . , the flat nodes semantically equivalent
to their semantics.

Description:

This command computes the flat semantics of given AltaRica nodes. The flat seman-
tics is a node equivalent to the original one but without any hierarchy nor priorities or
broadcast vectors.

As shown on the following example, flatten works with models that use abstract data
types and signatures. This is not the case of [ca command], page 19.

Example :
arc>eval

sort Queue;

const EMPTY : Queue;

const FULL : Queue;

sig put : Queue * integer -> Queue;

Chapter 3: The arc command 21

sig remove : Queue -> Queue;

sig first : Queue -> integer;

node Consumer

flow i : integer;

o : integer;

state q : Queue; init q := EMPTY;

state s : integer init s := 0;

event put > consum;

trans

q != EMPTY |- consum -> q := remove (q), s := first (q);

q != FULL |- put -> q:= put (q, i);

assert

o = s;

edon

EOF

arc>flatten Consumer

// flat semantics of node Consumer

node Consumer

flow

i : integer;

o : integer;

state

q : Queue;

s : integer;

event

’consum’;

’put’;

’consum’ < ’put’;

trans

q!=EMPTY and not (q!=FULL) |- ’consum’ -> q := remove(q), s := first(q);

q!=FULL |- ’put’ -> q := put(q,i);

assert

o=s;

init

q := EMPTY, s := 0;

// no initial constraint is specified.

edon

See also [gp00], page 69 and [ca command], page 19.

3.3.4 node-info

Get details about components of nodes.

Synopsis:

node-info node-id subcommand

Outputs data related to node node-id according to subcommand (or one of its non-
empty prefixes) where subcommand can be:

children Lists sub-nodes of the node

events Lists events of constraint automaton node-id .

flow-variables

Lists flow variables of constraint automaton node-id .

max-conf-card

Returns the maximal cardinality of the set of configurations (i.e., the size
of the Cartesian product of domains) of constraint automaton node-id .

state-variables

Lists state variables of constraint automaton node-id .

Chapter 3: The arc command 22

transitions

Lists macro-transitions of constraint automaton node-id .

varorder Displays the order used by decision diagram package for variables of con-
straint automaton node-id

Description:

This command returns data about a given node or its equivalent constraint automaton.
This command is mainly used by external scripts (e.g Altarica Studio).

3.3.5 obfuscate

Obfuscate AltaRica files.

Synopsis:

obfuscate [options] file1 file2 . . .

where options are:

--algo=id specify the algorithm used to obfuscate identifiers.

--dump-table=filename dump into a file the translation table (a sed script) from
identifiers to obfuscated identifiers.

--dump-rev-table=filename dump into a file the translation table (a sed script)
from obfuscated identifiers to actual identifiers.

Description:

This command renames all identifiers of given files fileis to make them anonymous even
if they can be exploited using arc.

Currently only one algorithm is implemented (--algo=sequential). It consists in the
replacement of each identifier of the file by a number precedeed by an underscore char-
acter. Each replacement is stored into a dictionary and all occurences of an identifier
are replaced using the same number. All files passed as arguments to the command
share the same dictionary; this way the coherence between files is ensured.

Note that files that contains arc scripts are not obfuscated.

3.3.6 solve

Solve the global assertion of the given nodes.

Synopsis:

solve node-id

glucose node-id

Outputs assignments that satisfy assertions of node node-id .

solve node-id max

glucose node-id max

Outputs at most max assignments that satisfy assertions of node node-id .

solve node-id max expr

glucose node-id max expr

Outputs at most max assignments that satisfy Boolean expression expr over variables
of node node-id .

Description:

This command has been added mainly for debugging purposes. Its is used to compute
the configurations authorized by assertions of a node (and its underlying hierarchy).
The set of solutions of assertions is represented explicitly; thus this command should

Chapter 3: The arc command 23

be use carefully. The number of displayed solutions can be limited using the second
argument max ; if max is negative no limit is applied.

A third argument can be a Boolean expression that is solved in place of assertions; this
expression is built over variables of node-id .

The Glucose solver ([GLU], page 69) can be called in place of the internal solver using
the command glucose.

Example : The following example models a pipe that can be broken. When the
failure occurs the pipe becomes leaky and its output rate becomes non deterministically
inferior to its input rate.

$ cat leaky-pipe.alt

const MAX_RATE = 5;

node Pipe

flow in, out : [0, MAX_RATE];

state mode : { nominal, degraded };

init mode := nominal;

event failure;

trans mode = nominal |- failure -> mode := degraded;

assert

case {

mode = nominal : out = in,

else out < in

};

edon

node Main

sub p : Pipe;

assert p.in = MAX_RATE;

edon

$ arc -qb leaky-pipe.alt -c ’solve Main’

// solutions to constraints of node ’Main’ (solver=solve)

p.mode = degraded, p.in = 5, p.out = 0

p.mode = degraded, p.in = 5, p.out = 1

p.mode = degraded, p.in = 5, p.out = 2

p.mode = degraded, p.in = 5, p.out = 3

p.mode = degraded, p.in = 5, p.out = 4

p.mode = nominal, p.in = 5, p.out = 5

$

3.3.7 stepper

A textual step-by-step simulator.

Synopsis:

stepper node-id start [form1] . . . [formn] : Solves configurations given as constraints.

stepper node-id valid-trans [form1] . . . [formn] : Lists transitions that can be trig-
gered from a given configuration.

stepper node-id trigger Tindex [form1] . . . [formn]: Trigger a transition from a given
configuration.

stepper node-id vars: Lists the variables of the node used by the stepper.

Description:

This command is a textual step-by-step simulator. It has been designed for Altarica
Studio GUI and not to be used directly by a user. The first argument is always the
identifier of a node. It is then followed by a subcommand name:

• start: Without argument, the command returns the initial configuration(s). Else,
arguments are interpreted as formulas over variables of the node. Then, the com-

Chapter 3: The arc command 24

mand returns configurations that satisfy both the conjunction of formis and asser-
tions of the node. The result of the command is a list of configurations (one per
line). Each configuration is a comma-separated list of equalities varname=value
where varname is a variable of the node and value its assigned value in the con-
figuration.

• valid-trans: This subcommand returns indices of macro-transitions that can
be triggered from the given configuration. The conjunction of formulas formi is
interpreted as the current configuration of the node. The semantics of formis in
conjunction with assertions must be a singleton. The command returns a list of
transitions with indices which are used next with the trigger command.

• trigger: The subcommand computes configurations that are reached from the
given configuration when transition with index Tindex is triggered. As for pre-
vious commands formis are interpreted as a set of configurations that must be a
singleton. The command displays a list of configurations.

• vars: variables (of the node) used by the stepper are displayed one variable per
line.

3.3.8 target-reduction

Project an AltaRica node on the cone of influence (COI) of a given formula.

Synopsis:

target-reduction [--option=filename]* nodeid formula

where option can be: depgraph-before, depgraph-after, goal-before, goal-after,
fdep-before, fdep-after, fdep-dot-before, fdep-dot-after, validate.

Description:

This command syntactically reduces AltaRica node specified by nodeid according
to the cone of influence induced by formula. formula is any Boolean formula over
variables of nodeid as can be specified in Acheck specifications (see Chapter 4 [Using
the Acheck specifications], page 39). The resulting node contains sufficient parts of the
original one to study accessibility of states satisfying formula.

Options are used to get informations related to reduction process. A filename can be
passed as argument to each option. The output generated by the option is printed into
the specified file; if the filename is empty the output is redirected onto standart output.

Except for validate, options are suffixed either by before or by after. The suffix
indicates when the option is applied i.e. before or after the reduction; both suffixes
can be used.

The meaning of options is the following:

• depgraph: displays the dependency graph (using dot format) of elements that
compose the node: variables, events, assertions, transitions.

• goal: displays the formula used to guide the reduction. After reduction formula
can have been rewritten according to discovered functional dependencies.

• fdep: displays dependencies between variables of the nodes.

• fdep-dot: same as fdep except that the result is printed using dot file format.

• validate: apply [validate command], page 27 to the reduced node.

The following example models N components (Cell) that form a kind of pipeline; the
output of the first one goes into the input of the second one, the output of the second
goes into the input of the third one, and so on. The AltaRica code is the following
(we use php preprocessor):

Chapter 3: The arc command 25

$ cat pipeline.alt.php

const N=<?php echo $argv[1] ?>;

node Cell

flow i, o : bool;

state s : bool;

assert o = (if s then i else false);

event act;

trans true |- act -> s := not s;

edon

node Pipeline

sub c : Cell[N];

assert

<?php for($i = 0; $i < $argv[1] - 1; $i++) { ?>

c[<?php echo $i ?>].o = c[<?php echo $i+1 ?>].i;

<?php } ?>

edon

Now imagine we want to observe the output of the ith component of the pipeline; say
the third one (i.e. c[2]). Actually, even if AltaRica semantics does not define any
notion of orientation of flow variables, the semantics of this model is such that variables
of component c[i] only depend on variables of components c[0], . . . , c[i− 1].

The following script shows the use of target-reduction for the observation of c[2].o.
The resulting flat node is reduced to elements that belong to components that influence
the value of c[2].o.

$ cat pipeline.arc

set arc.shell.preprocessor.php.args 5

load pipeline.alt.php

target-reduction --goal-after=pipeline.goal Pipeline "c[2].o"

$ arc -qb pipeline.arc

// statistics:

// number of variables : 4

// flow variables : 1

// state variables : 3

// max cardinality : 2

// number of events : 4

// number of assertions : 0

// number of transitions : 4

node Pipeline

flow // 1 flow variables

’c[0].i’ : bool;

state // 3 state variables

’c[0].s’ : bool;

’c[1].s’ : bool;

’c[2].s’ : bool;

event // 4 events

’c[0].act’;

’c[1].act’;

’c[2].act’;

trans

true |- ’c[2].act’ -> ’c[2].s’ := not ’c[2].s’;

true |- ’c[1].act’ -> ’c[1].s’ := not ’c[1].s’;

true |- ’c[0].act’ -> ’c[0].s’ := not ’c[0].s’;

edon

One can remark that it remains only one flow variable c[0].i and, furthermore,
c[2].o, the observed variable has disappeared. In order to reduce the number of
variables, several ones are replaced by discovered functional dependencies. These sub-
stitution are applied to the input formula. The option --goal-after= of target-
reduction (see above) outputs the resulting rewritten formula:

$ cat pipeline.goal

Chapter 3: The arc command 26

’c[0].s’ and ’c[0].i’ and ’c[2].s’ and ’c[1].s’

3.3.9 to-lustre

Translate given nodes into a Lustre program.

Synopsis:

to-lustre id1 id2 . . .

Translate nodes id1, id2, . . . into a Lustre program.

Description:

The command translates each node idi into a equivalent Lustre node. The translation
is done on all required items i.e. domains, sub-nodes, ... The translation algorithm
and its restrictions are described in details in [gp06], page 69.

The translation is parameterized by several preferences (see [Translation of AltaRica
models into Lustre programs], page 72 or simply type help a2l-preferences).

Example : The following example gives the translation of an AltaRica Switch node
into Lustre.

$ cat switch.alt

node Switch

flow

i : bool : in;

o : bool : out;

event

open, close;

state

is_open : bool;

init

is_open := true;

assert

is_open => (i = o);

trans

is_open |- close -> is_open := false;

not is_open |- close -> is_open := true;

edon

$ arc -qb switch.alt -c ’to-lustre Switch’

--

-- TRANSLATED NODES

--

-- WARNING : output/local variable ’f_o’ in node ’Switch’ is not defined.

node Switch(close_, f_i, open_ : bool)

returns (f_o : bool);

var

ec_0, ec_1, ec_3, s_is_open : bool;

let

-- Equations

ec_0 = false -> pre s_is_open and close_;

ec_1 = false -> pre (not s_is_open) and close_;

ec_3 = false -> pre false and open_;

s_is_open = true -> if ec_3 then pre s_is_open else (if ec_1 then pre true

else (if ec_0 then pre false else pre s_is_open));

-- Constraints

assert(close_ => (false -> pre (s_is_open or not s_is_open)));

assert(open_ => (false -> pre false));

assert(#(ec_0,ec_1,ec_3));

assert(not s_is_open or f_i = f_o);

assert(#(open_,close_));

tel

Chapter 3: The arc command 27

3.3.10 validate

Check a node against some basic validation properties.

Synopsis:

validate [--reach|--no-reach|id]*

Check each given node against some basic validation properties.

Description:

This command checks if a node verifies small validation properties. If such a property
is not satisfied one can suspect an error or an incompletness in the description of the
node.

Some of these properties are checked on semantics of each given node and require the
computation of reachable configurations. To disable the test of such properties one can
specify the option --no-reach. Option --no-reach and --reach can be used several
times and apply to following nodes.

Checked properties are the following:

Usage of variables
The command checks for each variable if it is used at least once i.e either
in an assertion or in a transition.

Uniqueness of the initial configuration
The command verifies that only one initial configuration is possible. If this
is not the case it reports variables that can take several values.

Coverage of domains w.r.t. configurations
The command checks that, according to assertions, each variable can be
assigned all values in its domain. If this is not the case, the variable
identifier and missing values are reported.

Coverage of domains w.r.t. reachable configurations
This is a similar same test than above but this time domains are checked
against reachable configurations. If a variable does not cover its domain
then missing values are reported but only values that are permitted by
assertions.

Unused macro-transitions
The command reports macro-transitions (i.e built by flatten semantics)
that are never triggered. This property requires reachable configurations.

Example : The following example displays the results of the command on a node
whose variables does not cover their domain and a transition is enabled only from an
unreachable configuration.

arc>eval

const N = 10;

const C_INIT = 1;

node A

flow f : [0,2*N]

state c : [0,N];

init c := C_INIT;

event inc, raz;

trans

c < N - 2 |- inc -> c := c + 1;

c = N |- raz -> c := C_INIT;

assert

f = 2 * c;

edon

Chapter 3: The arc command 28

eval>EOF

arc>validate A

basic properties checking for node ’A’

there is 8 configurations.

usage of variables

All variables are referenced at least once in assertions or transitions.

uniqueness of initial configuration

The system has only one initial configuration

coverage of domains / configurations

Flow variable ’f’ does not cover its domain.

Missing values (restricted to any assigments) verify:

((f = 5)) or ((f = 15)) or ((f = 17)) or ((f = 13)) or ((f = 1)) or ((f

= 19)) or ((f = 11)) or ((f = 3)) or ((f = 7)) or ((f = 9))

coverage of domains / reachables

State variable ’c’ does not cover its domain.

Missing values (restricted to configurations) verify:

((c = 0)) or ((((9 = c)) or ((9 < c))) and (((c = 10)) or ((c < 10))))

Flow variable ’f’ does not cover its domain.

Missing values (restricted to configurations) verify:

((f = 20)) or ((f = 0)) or ((f = 18))

usage of macro-transitions

(c = 10) |- raz -> c := 1 is never triggered.

3.3.11 chkctl

Checks if initial configurations of a node satisfy a given CTL property.

Synopsis:

chkctl [--to-dot=filename] node F

Check if the CTL formula F is satisfied by initial configurations of node. Depending of
the result, the command outputs a witness or a counter-example. If --to-dot specifies
a valid filename, the result is displayed in dot format.

3.4 Commands related to computations using exhaustive
engine

3.4.1 ts

Display the transition systems of given nodes.

Synopsis:

ts id1 id2 . . .

Displays transition systems of nodes id1, id2, . . .

Description:

For each specified node, the command computes the transition system that represents
its semantics. If the transition system has already been computed (with Acheck, a
call to ts-marks, . . .) then it is not recomputed.

Remarks:

1. The transition system is displayed into the Mec 4 file format.

2. The transition system is represented in memory as an explicit graph and then
displayed. All states and transitions are enumerated thus the output processes
can take lots of time and place.

Example : The following example gives the transition system of a simple counter.

Chapter 3: The arc command 29

arc>eval

const MAX_VALUE = 3;

domain COUNTER_RANGE = [1, MAX_VALUE];

node Counter

flow out : COUNTER_RANGE;

state value : COUNTER_RANGE;

event inc, dec;

trans true |- inc -> value := value + 1;

true |- dec -> value := value - 1;

assert out = value;

edon

arc>ts Counter

// transition system of node ’Counter’

transition_system Counter;

/*

* # states = 3

* # trans = 7

*/

out=1,value=1 |- ’$’-> out=1,value=1;

|- inc-> out=2,value=2;

out=2,value=2 |- ’$’-> out=2,value=2;

|- dec-> out=1,value=1;

|- inc-> out=3,value=3;

out=3,value=3 |- ’$’-> out=3,value=3;

|- dec-> out=2,value=2;

<any_s = { out=1,value=1, out=2,value=2, out=3,value=3 }, empty_s = {

}, initial = { out=1,value=1, out=2,value=2, out=3,value=3 }>.

3.4.2 ts-marks

Lists properties computed with Acheck engine.

Synopsis:

ts-marks node-id : Display properties of node node-id .

Description:

The command lists computed properties (i.e. sets of states and sets of transitions) for
node identified by node-id ; the cardinality of each set is displayed.

3.4.3 show-ts-marks

Display elements of properties computed using exhaustive engine on a transition system.

Synopsis:

show-ts-marks nodeid P1 P2 . . .

Display the elements of the sets P1, P2, . . . that are properties computed on the
transition system associated with the node nodeid .

Description:

The command displays the content of sets (of states or transitions) computed on the
transition system that represents the semantics of the given node.

If necessary this command computes the transition system for the given node.

3.5 Commands related to Mec 5 relations

3.5.1 card

Displays the cardinality of the relations given as arguments.

Synopsis:

card id1 id2 . . .

Chapter 3: The arc command 30

Display the cardinality of relations id1, id2, . . .

Description:

This command displays the cardinality of the relations given as arguments.

Example :
arc>eval

eval>R(x : [0,10]) := <y : [0,10]> (x = 3 * y);

eval>EOF

R (x : [0, 10]) : 4 elements / 2 nodes

arc>card R

card (R) = 4

arc>

An argument can refer to a predefined relation that has not yet been computed.

Example :
arc>eval

const MAX_VALUE = 3;

domain COUNTER_RANGE = [1, MAX_VALUE];

node Counter

flow out : COUNTER_RANGE;

state value : COUNTER_RANGE;

event inc, dec;

trans true |- inc -> value := value + 1;

true |- dec -> value := value - 1;

assert out = value;

edon

arc>list relations

arc>card Counter!c

card (Counter!c) = 3

arc>list relations

defined relations : Counter!c

arc>

3.5.2 check-card

Check that the given properties have the expected cardinality.

Synopsis:

check-card id1 [card1] id2 [card2] . . .

Checks that relation id1 has card1 elements, id2 has card2 elements, . . .

Description:

This command checks that for each given relation idi its cardinality is actually the one
specified by cardi. If the cardinality is omitted the non-emptyness is checked. If the
test fails, the actual cardinality is displayed between parenthesis.

Note that if the preference arc.shell.check-card-abort is true and if the cardinality
of the set is not the expected one then the program is aborted. This feature is mainly
used to make non-regression tests.

Example : The following example checks that a counter covers its domain. In a
first time we simply check the property but then we show the abortion of arc on an
erroneous cardinality.

arc>eval

const MAX_VALUE = 3;

domain COUNTER_RANGE = [1, MAX_VALUE];

node Counter

flow out : COUNTER_RANGE;

state value : COUNTER_RANGE;

event inc, dec;

Chapter 3: The arc command 31

trans true |- inc -> value := value + 1;

true |- dec -> value := value - 1;

assert out = value;

edon

arc>check-card Counter!c 3

check card (Counter!c) = 3 passed

arc>check-card Counter!c 4

check card (Counter!c) = 4 failed (3)

arc>set arc.shell.check-card-abort true

arc>check-card Counter!c 4

check card (Counter!c) = 4 failed (3)

$ echo $?

1

$

See [set command], page 17 and preference [arc.shell.check-card-abort], page 71.

3.5.3 pick

Extract an element from an existing relation.

Synopsis:

pick rel id [new rel id]

Display an element from the relation identified by rel id and put it in a new (singleton)
relation new rel id .

Description:

This command creates a new relation new rel id with the same signature than rel id
but containing just one element taken in rel id (if not empty). If the second argument
is not given, the computed singleton is simply displayed and not stored.

arc>eval

domain Range = [-5, 5];

R(x : Range, y : Range) := x < 2 * y;

R (x : [-5, 5], y : [-5, 5]) : 58 elements / 8 nodes

arc>pick R Relement

x = -5, y = -2

Relement : [-5, 5] * [-5, 5] -> bool

1 elements/3 nodes

arc>show Relement

Relement contains :

x = -5, y = -2

arc>

3.5.4 store

Save a computed relation into a file.

Synopsis:

store "filename.rel" [rel-id1 [as new-id1]] [rel-id2 [as new-id2]] . . .

Serializes relations rel-idi into the file called filename.rel.

Description:

This command permits to dump any relation into a file that can be reloaded later
using the [load command], page 16. In order to reload relations, file names must be
terminated with extension .rel. If the file exists then relations are stored at the end
of the file.

For each rel-idi, dumped informations are the following:

• the signature of the relation;

Chapter 3: The arc command 32

• relations related to the signature (e.g. Main!c);

• the DD encoding the relation.

Each rel-idi can be followed by a renaming using the syntax as new-id . In this case
new-id is stored in place of rel-idi.

Example 1 : The following example creates a relation R and stores it into a file R.rel.
The relation is then reloaded.

arc>eval

const MIN_VAL = 1;

const MAX_VAL = 6;

domain dom = [MIN_VAL, MAX_VAL];

R(s : dom) := <k : dom> (s = 3 * k);

eval>EOF

arc>show R

R contains :

s = 3

s = 6

arc>store "R.rel" R as Rprime

arc>list all

defined constants : MAX_VAL, MIN_VAL

defined domains : dom

defined relations : R

arc>load "R.rel"

arc>list all

defined constants : MAX_VAL, MIN_VAL

defined domains : dom

defined relations : R, Rprime

arc>info relations R Rprime

R : [1, 6] -> bool

cardinality : 2

data structure size : 2

Rprime : [1, 6] -> bool

cardinality : 2

data structure size : 2

arc>eval

eval>check_R() := [s : dom] (R(s) = Rprime(s));

eval>EOF

arc>show check_R

check_R contains :

true

arc>

The previous example works fine because the signature of R is not bound to any
AltaRica node. When a relation is related to a hierarchy of nodes, this hierarchy
must be present when the relation is reloaded. The following example describes this
point.

Example 2 : First we store into reach_Counter.rel the relation encoding reachable
configurations of a node Counter.

$ cat counter.alt

const MAX_VALUE = 3;

domain COUNTER_RANGE = [1, MAX_VALUE];

node Counter

flow out : COUNTER_RANGE;

state value : COUNTER_RANGE;

event inc, dec;

trans true |- inc -> value := value + 1;

true |- dec -> value := value - 1;

assert out = value;

Chapter 3: The arc command 33

edon

$ arc -q counter.alt

arc>store "reach_Counter.rel" Counter!reach

arc>info relations Counter!reach

Counter!reach : Counter!c -> bool

cardinality : 3

data structure size : 1

arc>^D

Now we restart arc with reach_Counter.rel as argument in order to reload the
reachable configurations without any computation:

$ arc -q reach_Counter.rel

wrong data or missing info in file ’reach_Counter.rel’.

arc displays an error because it misses types related to the node Counter e.g.
Counter!c. To fix this lack we reload the description of the system (no computa-
tion is done for this step) and then the serialized relation:

arc>load "counter.alt"

arc>list all

defined constants : MAX_VALUE

defined domains : COUNTER_RANGE

defined nodes : Counter

arc>load "reach_Counter.rel"

arc>list relations

defined relations : Counter!c, Counter!reach

arc>show Counter!reach

out in [1, 3], value = out

arc>

3.6 Computation of sequences and fault trees: cuts and
sequences

Computation of sets of scenarios

Synopsis:

cuts [common options] nodeid observation

sequences [common options] [--order=k] nodeid observation

where common options are:

--visible-tags=id1,..., idn tags identifying observable events

--disabled-tags=id1,..., idn tags identifying not allowed events

--min compute minimal sequences

--enum enumerate sequences

--prefix=prefid prefix added to identifier of generated formulas

Description:

These commands permit to compute sets of scenarios that lead the model described by
nodeid into a configuration satisfying the formula observation. The formula observation
can be any Boolean formula over all variables of nodeid .

Commands returns, by default, a Boolean formula that encodes implicants yielding the
expected configurations. If --enum is specified, arc enumerates elements of the result.

The formula is given using the syntax of the aralia tool. Literals of this formula are
elementary events of the model that have been specified as visible by the user. By
default, the set of visible events is empty ; thus, the result of the command is 0 or 1

depending on the existence or not of expected configurations.

The following session shows an example of cuts computation. The studied node is a
simple counter from 0 to 10. The counter can be incremented by one unit using inc

Chapter 3: The arc command 34

event or by two units using inc2 event. The first event is labelled with attribute attr1
and the second one with attr2. As explained above the result given by cuts is a
Boolean constant (here 1 because expected states are reachable from initial state).

$ cat cuts-example.alt

node Counter

state count : [0,10]; init count := 0;

event inc : attr1;

inc2 : attr2;

trans true |- inc -> count := count + 1;

true |- inc2 -> count := count + 2;

edon

$ arc -qb cuts-example.alt -c ’cuts Counter "count>=3"’

N0 := 1;

root := N0;

If we request arc to compute scenarios but considering that inc and inc2 must appear
in the result we obtain a Boolean formula that encodes two sequences:

$ arc -qb cuts-example.alt -c ’cuts --visible-tags=attr1,attr2 Counter "count>=3"’

N2 := 1;

N1 := (‘inc2’ ? -N2 : N2);

N0 := (‘inc’ ? -N2 : N1);

root := -N0;

Now if only event inc2 is observed we obtain yet the Boolean constant 1.

$ arc -qb cuts-example.alt -c ’cuts --visible-tags=attr2 Counter "count>=3"’

N0 := 1;

root := N0;

Why do we obtain 1? Because, event inc2 is implicitly simplified. Actually, non-
observed events are projected (i.e., quantified) in the formula obtained when all events
are observed. In our example the formula is inc or inc2; thus when inc2 is quantified
the formula is simplified into 1.

The option --disabled-tags=id1,... permits to indicate that events labelled with tags
idis are forbidden in scenarios:

$ arc -qb cuts-example.alt -c ’cuts --visible-tags=attr2 --disabled-tags=attr1

Counter "count>=3"’

N1 := 1;

N0 := (‘inc2’ ? -N1 : N1);

root := -N0;

The command cuts computes sets of events, called cuts, which means that the order
of occurence of events does not appear in the result. If this order is relevant, one
can use the command sequences that receives the same arguments than cuts except
an additional one the maximal length of computed sequences. The option --order=k

indicates that arc has to compute ordered sequences of events that can not contain
more than k visible events. If we come back on previous example and limit the number
of visible events to 3 we get sequences given below. Note that this time ordered
sequences are not given as Boolean formulas but enumerated (we used --enum).

$ arc -qb cuts-example.alt -c ’sequences --enum --visible-tags=attr1,attr2

--ordered=3 Counter "count>=3"’

(inc2, inc2)

(inc2, inc)

(inc, inc2)

(inc, inc, inc2)

(inc, inc, inc)

One can notice that some sequences are missing; actually, we could complete those of
length 2 with a third event and always get count>=3. Indeed, the algorithm translates
the decision diagram of reachable configurations into sequences and some redundant

Chapter 3: The arc command 35

occurrences of events may have been suppressed by DD construction rules. These miss-
ing sequences are not actually interesting because they contain shorter sub-sequences
that produce the expected configurations.

The option --min can be used to filter sets to minimal elements. If cuts are computed
the minimality criterion is the inclusion. In the case of ordered sequences, sub-sequences
(or sub-words) are considered.

$ arc -qb cuts-example.alt -c ’sequences --enum --visible-tags=attr1,attr2

--ordered=3 --min Counter "count>=3"’

(inc2, inc2)

(inc2, inc)

(inc, inc2)

(inc, inc, inc)

3.7 Stochastic simulation: sas

The stochastic simulator is invoked using the sas command. For detail on stochastic simulation
in arc we refere the user to Chapter 6 [Stochastic simulation], page 55.

Synopsis:

sas [options]

where options are:

--scheduler=S

specifies the data-structure used to implement the scheduler of events. S
can take two values:

- cq for a calendar queue implementation ([RB98], page 69).

- dlink for a doubled-linked list scheduler.

By default dlink is used.

--prng=R selects the pseudo-random number generator. R can take 3 values:

- ed for the Erard-Deguenon generator

- mks is the Kiss-SWB generator of Marsaglia.

- mkl is the Kiss-LFIB4 generator of Marsaglia.

By default ed is used.

--nb-threads=P

P indicates the number of threads used to simulate the system. Each thread
executes N /P stories where N is the total number of stories.

--ignore-sigint

This option allows the cancellation of arc when the user sends a INT signal
to the process (e.g. using Ctrl-C). When this option is ommitted, arc
displays a menu that proposes the user either to cancel the simulation or
to display current results or to continue the simulation.

--timeout=d

d permits to allocate d seconds to the simulation. After this time arc
terminates the simulation of current stories and then cancel the whole
simulation.

--seed=s s specifies an integer seed s for the pseudo-random number generator.

--loop-length=len

len indicates the length of the longest sequence of transitions that does not
change the current time. If the simulator executes len transitions without
increasing the time, arc considers it enters an infinite loop and stop the
simulation.

Chapter 3: The arc command 36

--nb-stories=N

N is the number of stories that have to be simulated. Each story is an
execution of the system.

--duration=T

T is the number of time units for each story. T depends on the nature
of the system and parameters of laws. For instance if failure rates are
given in hours, the time allowed for the mission of the system T should be
expressed in hours.

--nb-tries=t

If parameters of laws are not constants, arc computes t simulation with
N stories. Before each simulation of N stories, the tool draws new values
for random parameters.

Description:

sas command is a Monte-Carlo algorithm that simulates random behaviors of a sys-
tem according to stochastic data given in the extern clauses of its AltaRica model.
For a detailed description of these clauses, we refer the user to Chapter 6 [Stochastic
simulation], page 55.

The algorithm simulates N runs (specified with --nb-stories) from the initial con-
figuration of the system until the time reach the limit T specified with the option
–duration. Each run is called a story.

For each story, arc records statistical data related to the execution of the system among
which the frequency of transitions. The user can also specify observers. An observer
is either a Boolean formula (predicate) over variables of the system or an simple
expression (property) e.g the value of an integer variable. For each Boolean observer
arc computes the mean, the standard deviation of the following random variables:

- The number of times (per story) the observer is equal to true;

- The cumulated time with the value true;

- The first instant where the observer is equal to true.

- The number of missed occurrences of the observer i.e. when the observer is true
after the mission delay.

Else, for all observers, the tools computes:

- Its value;

- Its final value.

For each measure, the tool reports its confidence to 90%. If the mean is m while the
actual mean is M , arc computes ε such that Prob(M − ε ≤ m ≤M + ε) = 90%.

Example : The following example is a simple component that can fail with a rate of
one failure for 1000 hours. It can also be repaired with a rate of one per 100 hours.

node ComponentLambdaMu

event

failure, repair;

state

mode : { OK, KO }; init mode := OK;

trans

mode = OK |- failure -> mode := KO;

mode = KO |- repair -> mode := OK;

extern

parameter LAMBDA = 1e-3;

parameter MU = 1e-2;

law <event failure> = exponential(LAMBDA);

Chapter 3: The arc command 37

law <event repair> = exponential(MU);

predicate KO = <term (mode = KO)>;

edon

sas --duration=10000 --nb-stories=1000000 --nb-threads=4 ComponentLambdaMu

We simulated the behaviors of this component and observed its failure mode. arc
gaves us the following results:

*** ACTION FREQUENCIES

NAME MEAN STDDEV CONF.

failure 9.09434E+00 2.75802E+00 4.52315E-03

repair 9.00353E+00 2.74571E+00 4.50296E-03

*** CUMULATED TIME WITH EXPECTED VALUE

NAME MEAN STDDEV CONF.

KO 9.00726E+02 3.84160E+02 6.30023E-01

*** NUMBER OF OCCURRENCES

NAME MEAN STDDEV CONF.

KO 9.09434E+00 2.75802E+00 4.52315E-03

*** FIRST OCCURRENCES

NAME MEAN STDDEV CONF.

CENSURED

KO 1.00060E+03 9.99918E+02 1.63992E+00

61

3.8 Experimental commands

3.8.1 diag

Computation of fault trees.

Synopsis:

diag [--visible-tags=id1,...] [--disabled-tags=id1,...] nodeid observation

Description:

Similarly to [cuts command], page 33, this commands aims to produce fault-trees of
an AltaRica model wrt a given unexpected configuration observation. Introduced in
arc 1.5, this new command uses an algorithm that is not yet guaranteed and thus it
must be used in full knowledge of that fact.

While cuts is a global algorithm that computes reachable configurations of the model,
diag has an approach based on hand-made fault trees which basically is not able to
capture dynamic behaviors.

Arguments are the same that those of [cuts command], page 33 except that --enum
and --min are not allowed.

diag produces a Boolean formula as a set of equations given in aralia format.

3.8.2 sat

Use internal SAT solver to check satisfiability of formulas.

Synopsis:

sat node cnf F

sat node solve F

sat node assertions

sat node steps k

sat node reachables F k

Chapter 3: The arc command 38

Description:

This command is used to make experiments with the internal SAT Solver which is
currently Glucose (see [al15], page 69). The first argument of the command is an
AltaRica node on which the command is applied. Then following sub-commands can
be specified (a prefix of it can be used):

cnf F The formula F is compiled into a SAT instance in conjunctive normal form.
This command display the Boolean formula and its corresponding set of
clauses sent to SAT solver.

solve F The SAT solver looks for a model (a solution) of the Boolean formula F .
This latter is built over variable of the input node. The command display
sat if a model has been found or unsat is the formula is not satistiable.

assertions

Apply the satifiability checking on assertions of the node. The command
outputs sat or unsat.

steps k This command produces a Boolean formula that represents a sequence of k
steps from an initial configuration and checks if the formula is satisfiable.
The underlying sequence of states does not contain a loop (i.e. all states
are differents).

reachables F k

This command checks if there exists a configuration that satisfies the for-
mula F in less than k steps.

Chapter 4: Using the Acheck specifications 39

4 Using the Acheck specifications

In this chapter we present the Acheck module of arc. This part of the tool is inherited
from Acheck, the model-checker of the previous suite of tools called AltaTools. The main
difference with the Acheck tool is that arc use two data structures to represent state-spaces;
either the explicit state graph defined by the semantics of nodes, or relations stored as BDDs
that represent sets of configurations or sets of transitions.

4.1 Overview

We have kept the input language of Acheck for specifications. An Acheck file is a list of
blocks

with N1

, ..., Nk
do

...

done

where Ni are identifiers of nodes loaded into memory. A list of computation queries or commands
are placed between the do and done keywords. All commands or computations are all applied
to a node Ni and nodes are treated sequentially. Each command or computation implicitly refers
to the node under study. For instance, the following command:

dot (any_s, any_t)

displays the state-graph of the current node using the dot graph file format.

Comments can be added using C-like comments:

with N do /* a C comment can be used for one */

...

/* or for

several

lines */

...

done

or C++ like comments:

with N do // a C++ comment starts after the double-slash and

... // ends at the end of the line.

done

While computations do not produce any output, commands (e.g dot) print information onto
the standard output of the arc process. Data displayed by commands can be redirected. This
redirection uses the same notation that the one used by Unix shells:

> ’filename’

redirects the stream into the file filename. The file is created if necessary; but if the
file already exists then its content is erased.

>> ’filename’

redirects the stream at the end of the file filename. The file is created if necessary.

If $NODENAME is a substring of filename then this latter is replaced by the name of the node
under study. For instance the following Acheck command:

with Switch, Generator do

show (all) > ’$NODENAME.result’;

done

should create two files named Switch.result and Generator.result that contain computed
predefined properties for nodes Switch and Generator.

Chapter 4: Using the Acheck specifications 40

4.2 Representation of the semantics

As said in the introduction of this chapter, Acheck supports two kinds of data structures to
store state-spaces. The very first version of the Acheck engine uses an explicit representation
of state-spaces using an explicit graph as data structure. The Decision Diagrams (DD) package
of the Toupie tool ([cr97], page 69) has been then integrated into arc. While edges of a BDD
are labelled by Boolean values 0 and 1, those of a DD are labelled by the n values in the domain
of the considered variable. Thus, DDs are essentially a n-ary extension of BDDs.

The default data structure used for computation of properties is the DD representation. It
is possible to explicitly specify the data structure using a keyword after do: symbolically for
DDs or exhaustively for graphs.

with N1

, ..., Nk
do exhaustively // enable graph-based representation

...

done

Depending on the choosen data structure used to store state spaces, some commands, built-in
properties or operators are not available. In the sequel we indicate this availability using: TS
to denotes the graph data structure and DD for Decision Diagrams.

4.3 Computing properties of nodes

Acheck language allows to specify sets of configurations and sets of transitions. Each set is
defined using an equation of the form:

X @= F

where X is the name assigned to the computed set and F is a formula defining the set and
which depends on already computed sets. @ must be replaced by a colon (:), a plus (+) or a
minus (-) symbol:

• X:=F defines a set that is computable directly from the evaluation of the formula F .

• X+=F (X) or X-=F (X) define the set X as, respectively, the least and the greatest fixed
point1 of the monotone function F (X). Of course, if X does not appear in the formula F
then X := F , X += F and X -= F define the same set X.

Of course, depending on the underlying data structure, algorithms used to compute sets are
different. On the one hand, if the explicit state-graph is used, the linear algorithm of Arnold
and Crubillé is called to solve fixed point equations ([ac88], page 69). On the other hand, when
Decision Diagrams ([cr97], page 69) are used, the function defining the set is simply iterated
until the fixed point is reached.

Formulas describe either sets of transitions or sets of configurations. Formulas are built
using predefined or user defined sets, Boolean operators and built-in function that compute
either transitions or configurations sets. All these elements are further detailed in sub-sections
below.

Remark: The reader should keep in mind an important difference between the two represen-
tations: when the explicit representation is used the computed sets are sets of reachable objects
(states/configurations or transitions) while this is not the case for the sets encoded with DDs.

4.3.1 Built-in sets

Acheck pre-defines several sets of configurations or transitions. These sets are given below.
For each one we indicate its availability w.r.t. the selected encoding of the semantics.

1 The += and -= notations (inherited from Toupie) refers to the way the computed set evolves at each iteration
of the fixed point computation (when using such algorithm). Least fixed point add (+) new elements to the
set while the greastest fixed point removes (-) elements.

Chapter 4: Using the Acheck specifications 41

4.3.1.1 Sets of configurations

any_c This set contains all valid configurations of the current node. A configuration is an
assignment of variables that satisfies the global assertion of a node. Remember that
a configuration is not necessarily reachable from the initial state(s).

Encoding: DD

valid_state_assignments

This set contains assignments of variables such that the value of state variables
permits to satisfy assertions of the node. Flow variables are allowed to take any
value in their domains (thus, this set is not a subset of valid configurations any_c).

Encoding: DD

empty_s This set contains no configuration.

Encoding: TS , DD

any_s This set contains configurations that are reachable from initial configurations.

Encoding: TS , DD

initial This set contains initial configurations i.e. assignments of variables that satisfy both
the init and assert clauses of the node. By definition this set is a subset of any_c.

Encoding: TS , DD

4.3.1.2 Sets of transitions

any_t This set contains transitions between reachable configurations i.e. elements of any_s.

Encoding: TS , DD

any_trans

This set is the relation transition where post- and pre- conditions are not applied.

Encoding: DD

empty_t This set contains no transition.

Encoding: TS , DD

epsilon This set of transitions is the restriction of any_t to transitions labelled by the ε
event or, more precisely, transitions where all components trigger the ε event.

Encoding: TS , DD

not_deterministic

This set identifies not deterministic transitions. A transition (s, e, s′) is not deter-
ministic if there exists another transition (s, e, s′′) such that s′ 6= s′′.

Encoding: TS

self This is the set of elementary loops i.e. transitions with the same (reachable) config-
uration as source and target.

Encoding: TS , DD

self_epsilon

This set is simply a shortcut for self ∩ epsilon.
Encoding: TS , DD

valid_state_changes

This is the restriction of any_trans to valid_state_assignments.

Encoding: DD

Chapter 4: Using the Acheck specifications 42

4.3.2 Operators

assert(S)

S denotes a set of assignments of variables that are not necessarily configurations.
assert intersects S with assertions of the model (i.e. any_c) which makes the result
valid configurations.

If the encoding is DD the result is not necessarily a subset of any_s because com-
puted configurations can be unreachables.

Encoding: TS , DD

X1 and X2

X1 & X2 Computes the intersection of the two sets X1 and X2. The two sets must have the
same type.

Encoding: TS , DD

X1 or X2

X1 | X2 Computes the union of the two sets X1 and X2. The two sets must have the same
type.

Encoding: TS , DD

X1 - X2 Computes the difference of the two sets X1 and X2. The two sets must have the
same type.

Encoding: TS , DD

[φ] This operator returns assignments of variables that satisfy φ where φ is a Boolean
AltaRica expression over variables of the considered node.

Note that depending on the encoding of the state space, [φ] has not the same se-
mantics. On the one hand, when the encoding is TS the result contains assignments
that are, by construction, reachable configurations. On the other hand, the result
computed using the DD encoding is not constrained to belong to any_s or any_c.

Encoding: TS , DD

coreach(S, T)

S denotes a set of configurations and T a set of transitions. coreach computes the
set of valid configurations (i.e. belonging to any_c) that are co-reachable from S
using only transitions in T .

If the encoding is DD the result is not necessarily a subset of any_s.

Encoding: TS , DD

label E E is the identifier of an elementary event. label E returns the set of transitions
whose (global) events contain E . If the encoding is DD , transitions are not con-
strained by pre- or post-conditions i.e. label E is a subset of any_trans.

Encoding: TS , DD

attribute A

A is the identifier of an attribute that labels events. attribute A returns the set
of transitions whose (global) events possess at least one event labelled with A. If
the encoding is DD , transitions are not constrained by pre- or post-conditions i.e.
attribute A is a subset of any_trans.

Encoding: TS , DD

loop(T1, T2)

T1 and T2 are sets of transitions. The loop operator returns the subset of T2 that
form strongly connected components (not necessarily one) containing at least one
transition in T1.

Chapter 4: Using the Acheck specifications 43

Encoding: TS

not X X is either a set of configurations or a set of transitions. This operator returns
the complement of the given set X . If the encoding is TS , X is complemented into
reachable configurations (i.e. any_s) or transitions (i.e. any_t). If the encoding is
DD the complement is taken from the set of all possible assignments or transitions.

Encoding: TS , DD

pick(X) This operator simply returns a singleton taken from X or an empty set if X is
empty. The way the element is selected is not specified.

Encoding: TS , DD

proj_f(X)

proj_s(X)

These operators project the given relation X on a subset of variables: flow variables
for proj_f and state variables for proj_s. Resulting relations returned by proj_x

have the same arity than X i.e. variables are not actually removed but they are
allowed to take any value in their domain.

X can be either a set of states or a set of transitions.

Encoding: DD

reach(S, T)

This operator returns the set of valid configurations that are accessible from S using
transitions in T . Note that if the encoding is DD the computed configurations are
not necessarily reachable from initial ones.

Encoding: TS , DD

rsrc(S) This operator returns the set of transitions enabled from a configuration in S . In the
case of a DD encoding, transitions are not constrained by pre- and post-conditions.

Encoding: TS , DD

rtgt(S) This operator returns the set of transitions that lead to a configuration in S . In the
case of a DD encoding, transitions are not constrained by pre- and post-conditions.

Encoding: TS , DD

src(T) This operator returns the set of configurations that are the origin of at least one
transition in T . Returned configurations are not constrained by assertions.

Encoding: TS , DD

tgt(T) This operator returns the set of configurations that are the target of at least one
transition in T . Returned configurations are not constrained by assertions.

Encoding: TS , DD

trace(S1, T, S2)

This operator returns a shortest path from configurations in S1 to those belonging
to S2 and using transitions in T . The result of trace is the set of transitions that
compose the path.

In the case of DD encoding the path is not necessarily reachable from the initial
state.

Encoding: TS , DD

unav (T, S)

This operator returns the set of configurations from which all paths composed of
transitions in T pass by a configuration in S .

Encoding: TS , DD

Chapter 4: Using the Acheck specifications 44

4.3.3 Using CTL* logic

When using DD encoding, Acheck permits to specify sets of states using the well-known logic
ctl∗([eh86], page 69). As usual, formulae are built from previously computed sets and composed
with Boolean connectives (&/and, |/or, ~/not, =>, <=> and xor). The ctl∗ logic allows to talk
about paths starting from states. A quantifier of path E is introduced: if φ is a path-formula (see
below), a state s satisfies the formula E[φ] if there exists a path starting from s that satisfies φ.

Formulae about paths are built using state formulae, Boolean connectives, an unary operator
X (called next) and a binary one U (called until). Operands of X and U are either state or path
formulae. If p is a state formula, ψ and φ path formulae, then a path σ = s0, s1, s2, . . . satisfies:

- p if s0 satisfies p;

- Xψ if the suffix s1, s2, . . . satisfies ψ which means intuitively that at the next step the path
satisfies ψ;

- ψ U φ if there exists i ≥ 0 such that for all 0 ≤ j < i, sj, . . . , si, . . . satisfies ψ and si, . . .
satisfies φ. Intuitively the formula expresses that the path satisfies ψ until φ becomes true.

From basic operators several shortcuts are defined:

- A[ψ] ≡ not E[not ψ] is satisfied by states from which all paths satisfy ψ.

- Fψ ≡ true U ψ is satisfied by paths that have a suffix that satisfy ψ. F abbreviates finally
and means that something eventually happens in the future on the path.

- Gψ ≡ not F (not ψ) is satisfied by paths whose all suffixes satisfy ψ. G abbreviates globally
and means that something is always true all along the path.

- ψ W φ ≡ (ψ U φ) or Gψ is called the weak until. It specifies that ψ is true until φ becomes
true but, if φ can not be satisfied then ψ must be always true.

- AXψ ≡ A [X ψ] is satisfied by states such that at the next instant ψ is satisfied.

- AFψ ≡ A [F ψ] is satisfied by states from which eventually in the future ψ is satisfied.

- AGψ ≡ A [G ψ] is satisfied by states from which ψ is always satisfied. If an initial state
satisfies AGψ then ψ is an invariant of the system.

- EXψ ≡ E [X ψ] is satisfied by states from which at the next step ψ can be satisfied.

- EFψ ≡ E [F ψ] is satisfied by states from which ψ can be satisfied in the future.

- EGψ ≡ E [G ψ] is satisfied by states from which ψ can become continuously true.

In order to specify a set using ctl∗ logic, the formula must be preceded by the ctlspec

keyword. Note that ctl∗ specifications are not allowed within fixed-point equations.

with N do

P := ...;

C := ctlspec E [X P];

done

No dedicated decision procedure is implemented to check ctl∗ formulae. Actually each ctl∗

formula is translated into a system of fixed-point equations that is solved using Mec 5 engine
(see Chapter 5 [Using the Mec 5 specifications], page 49). The translation procedure is those
given in [mm94], page 69. The equation system used to check a ctl∗ formula can be displayed
using Acheck command [ctl2mu], page 45.

arc>eval

eval>node A edon

with A do

ctl2mu (AX any_s);

done

eval>EOF

translation of AX any_s into Mec 5 specs:

begin

local X_0 (v~1 : A!c) += A!any_s (v~1) & <t~4 : A!c>A!nsemove (v~1, t~4) & ~A!any_s (t~4);

Chapter 4: Using the Acheck specifications 45

R$ (v~5 : A!c) +2= A!any_s (v~5) & ~X_0 (v~5);

end

arc>

In the previous example R$ is an internal identifier used to name the relation encoding the
computed set.

4.4 Commands

display(id1, ..., idn)

This command lists all the elements of sets id1, . . . , idn. Each idi is either a
predefined set like any_s or a set computed by the user. If the encoding is DD the
predefined sets are computed on demand.

Since the command enumerates elements of specified sets, it is quite wasteful to
used it on large sets. To get the size of the set, the command show (see [show],
page 46) should be preferred and the operator pick (see [pick], page 43) can be
used to extract samples from sets.

Encoding: TS , DD

ctl2mu(F)

This command outputs the translation of ctl∗ formula F into aMec 5 specification.
See Section 4.3.3 [Using CTL* logic], page 44.

Encoding: DD

dot(S, T) This command outputs, in dot graph format, the reachability graph restricted to
the set of configurations S and transitions T . Note that all reachable configurations
belonging to S are displayed even if they have no successors or predecessors.

Encoding: TS , DD

dot-trace(I, T, F)

This command outputs, in dot graph format, a shortest trace from a state in I to
a state in F using transitions in T . Actually this command is just a shortcut for:

tr := trace (I, T, F);

dot (src(tr) or tgt(tr),tr);

Encoding: TS , DD

events(T)

This command lists events that labels transitions belonging to the set T .

Encoding: TS , DD

modes()

This command display the mode-automaton of the current node. A mode is an
assignment of state variables. Configurations are gathered according to each mode.
T .

Encoding: DD

nrtest(’filename’)

nrtest(X, n)

This command is used to realize non-regression tests. In its first form, the user
specifies in a file filename expected results. Each line of this file is a couple:

set-identifier cardinality

The nrtest command simply checks the equality of the cardinality of the computed
set set-identifier with the one specified into filename.

Chapter 4: Using the Acheck specifications 46

If either the set has not been computed or if the cardinalities differ the test fail and
in this case, according to the value of preference acheck.nrtest-failure-aborts,
the program might terminate and returns to the caller program (e.g. the shell) with
an error code.

The second form simply checks that n is the cardinality of set X .

See preference [acheck.nrtest-failure-aborts], page 72.

Encoding: TS , DD

project(S, (TE, TA), id, simplify [, subnode])

project(S, TE, id, simplify [, subnode])

This command projects the semantics of the node under study on one of its compo-
nent if the argument subnode is specified; else it is projected on itself. The displayed
result is an AltaRica node named id that is essentially the same than the original
one but where transitions are restricted with those actually reached when the se-
mantics is computed. The reachability graph can also be restricted to configurations
belonging to S and transitions of TE and TA. If the Boolean argument simplify is
true then guards are simplified; the aim of this parameter is to obtain clearest
transitions (in particular for trivial guards).

Encoding: TS , DD

quot()

This command displays, in dot graph format, the greatest autobisimulation compat-
ible with already computed properties of configurations; in other words the greatest
bisimulation included in the relation

R = {(s, s′)|∀P ∈ P, s ∈ P ⇐⇒ s′ ∈ P}
where P is the set of configuration sets already computed.

Encoding: TS , DD

remove(id1, ..., idn)

This command removes from arc memory properties specified by identifiers id1,
. . . , idn. If some property idi does not exists a warning is emitted.

Encoding: TS , DD

show(id1, ..., idn)

This command displays the cardinality of sets identified by idis. If some idi is equal
to all then the command displays all already computed sets.

In the case of DD encoding, predefined sets (e.g. any_s) are computed on demand.
Note that the all keyword does not induce the computation of predefined sets.

Encoding: TS , DD

test(X, n, ce)

test(X, n)

test(X, w)

test(X)

This command is used to check that the cardinality of the set X is n. The command
simply displays the result of the test. If the test fails the actual size is displayed. If
the set is expected to be empty (i.e. n should be 0) and if the Boolean ce is true
while the test fails, a counter-example is computed and displayed.

If the expected cardinality n is not specified the non-emptyness of X is checked and
if w is true while the test successes, a witness is picked from the set and displayed.

Encoding: TS , DD

Chapter 4: Using the Acheck specifications 47

validate()

This command simply applies [validate command], page 27 to the current node.

Encoding: DD

wts(S, T)

This command is inherited from Mec 4. It displays the restriction of the transition
system in Mec 4-like format.

Encoding: TS

Chapter 5: Using the Mec 5 specifications 49

5 Using the Mec 5 specifications

Mec 5 (see [av03], page 69) files consist in the definition of predicates (also called relations in
the sequel). Files may contain domain or constant definitions using the AltaRica syntax.

This chapter is divided into two sections. The first one describes the syntax used to define new
relations. The last one presents a set of predefined relations that are bound to each AltaRica
node.

5.1 Writing Mec 5 predicates

The definition of a n-ary predicate called name has the following form:
name(p1 : dom1, . . . , pn : domn) ξ= φ(p1, . . . , pn);

where:

• pis are formal parameters of the predicate. Each pi takes its values into the domain domi.

• φ is a Boolean formula that depends on pis and on already defined predicates and constants.
The syntax of Boolean formula is the same than for AltaRica except that quantifiers are
allowed. The following formula:

<x1,1, . . ., x1,n1
: D1; . . .; xk,1, . . ., xk,nk

: Dk> F
means

∃x1,1 ∈ D1, . . . ,∃x1,n1
∈ D1, . . . ,∃xk,1 ∈ Dk, . . . ,∃xk,nk

∈ Dk(F).
Square brackets, [and], are used in place of < and >, for the universal quantification (∀).

• ξ is one of the following characters:

• a colon (:) which means that the defined name is simply the set of assignments of pis
that satisfy φ.

• a plus sign (+) which means that name is defined recursively in function of itself and
its semantics is the least fixed point of the recursive sequence.

• a plus sign (-) which means that name is defined recursively in function of itself and
its semantics is the greatest fixed point of the recursive sequence.

Example 1 : The following example gives two ways to define a predicate that is true only for
even numbers between 0 and 20. The first relation specifies that an even number is a multiple
of 2 while the second one specifies that an even number is simply equal to an even number plus
2. We check that both relations are equivalent using a predicate named diff containing integers
that differenciate both versions of the even predicate.

arc>eval

eval>const N = 10;

domain R = [0, N];

even_v1(s : [0, N]) := <n : [0,N]> (s = 2*n);

even_v2(s : [0, N]) += (s=0) | <t : [0,N]> (even_v2 (t) and s = t+2);

diff(s : [0,N]) := not (even_v1(s) = even_v2(s));

eval>EOF

even_v1 (s : [0, 10]) : 6 elements / 2 nodes

even_v2 (s : [0, 10]) : 6 elements / 2 nodes

diff (s : [0, 10]) : empty

arc>show even_v1

even_v1 contains :

s = 0

s = 2

s = 4

s = 6

s = 8

s = 10

arc>

Chapter 5: Using the Mec 5 specifications 50

Sometimes it is convenient to split up an equation into several clearest equations. Equations
systems are specified between begin and end keywords.

Example 2 : Similarly to example 1, the following equation system defines two predicates that
are true, respectively, when an integer in some range R is odd or even. The definitions of these
predicates are mutually recursive: an odd number is equal to an even number plus one and an
even number is either 0 or is equal to an odd number plus one.

arc>eval

eval>const N = 10;

domain R = [0, N];

begin

odd (s : R) += <t : R> (even(t) and s = t + 1);

even (s : R) += (s = 0) | <t : R> (odd (t) and s = t + 1);

end

eval>EOF

even (s : [0, 10]) : 6 elements / 2 nodes

odd (s : [0, 10]) : 5 elements / 2 nodes

arc>show even

s = 0

s = 2

s = 4

s = 6

s = 8

s = 10

arc>show odd

s = 1

s = 3

s = 5

s = 7

s = 9

arc>

Some equations defined in equation systems exist only for the sake of clarity. It is possible
to introduce temporary definitions whose names and allocated memory ressources are released
after the computation of the fixed point. Temporary definitions are introduced using the local
keyword.

Example 3 : The previous predicates, even and odd, can be defined using a third binary predicate
succ(s, t) that is true when t = s + 1. If we consider that succ is not important for the sequel
it can be set local to the equation system:

arc>list all

arc>eval

const N = 10;

domain R = [0, N];

begin

local succ (current : R, next : R) := next = current + 1;

odd (s : R) += <t : R> (even(t) and succ (t, s));

even (s : R) += (s = 0) | <t : R> (odd (t) and succ (t, s));

end

eval>EOF

even (s : [0, 10]) : 6 elements / 2 nodes

odd (s : [0, 10]) : 5 elements / 2 nodes

arc>list all

defined constants : N

defined domains : R

defined relations : even, odd

arc>

Mec 5 equation systems also permit to alternate types of fixed point. Alternation is intro-
duced using a positive integer d between the sign and the equal characters: +d= or -d=. This

Chapter 5: Using the Mec 5 specifications 51

integer indicates the height of the µ/ν operator into the alternation hierarchy; the higher d is,
the higher the operator is.

Example 4 : The following example is taken from Toupie and Mec 5 manuals. Below is a graph
whose vertices are labelled with integers.

(0) (1)

(2)

(3) (4) (5)

(6)

(7) (8) (9) (10)

One want to compute states from which there exists an infinite path containing a vertex with
an odd label. States verifying this property satisfy the formula νT.µA(�A ∨ �(T ∧ODD))).

arc>eval

eval>const N = 10;

domain vertex = [0,N];

g(S : vertex, T : vertex) := (T = S + 1)

| ((S = 3 | S = 7) & (T = S - 2))

| ((<n : [0, N]> (S = 2 * n)) & (T = S))

;

odd (S : vertex) := <n : [0, N]> (S = 2 * n + 1);

begin

local aux(V : vertex) +1= <W : vertex>(g(V, W) & aux(W))

| <W : vertex>(g(V, W) & odd(W) & tau(W));

tau(U : vertex) -2= aux(U);

end

eval>EOF

arc>show tau

tau contains :

U in [0, 7]

5.2 Built-in Mec 5 relations

Mec 5 allows the use of particular identifiers that use an exclamation mark (!). This special
identifiers represent either a relation (e.g. !init) or a type (e.g. !c) bound to an AltaRica
node. Existing identifiers are listed below.

!c: Type for configurations of a node
N!c is the type for configurations of the node N. Elements of this type are assign-
ments of state and flow variables that satisfy assertions of the node. Variables of
the node and sub-node are accessible using the dot (.) notation.

Example : Consider the following AltaRica system where a node B embeds two
subnodes of kind A:

node A

state x : bool

edon

node B

state y : bool

sub a : A[2]

edon

The following lines give valid Mec 5 equations:

arc>eval

eval>R1(x : B!c) := (x.a[0].x = x.y);

eval>R2(x : B!c) := <z : A!c> (x.a[0] = z and z.x = x.y);

eval>R3(x : B!c) := R1(x) != R2(x);

eval>EOF

Chapter 5: Using the Mec 5 specifications 52

R1 (x : B!c) : 4 elements / 3 nodes

R2 (x : B!c) : 4 elements / 3 nodes

R3 (x : B!c) : empty

arc>

!epsilon: Epsilon event ($)
N!epsilon is a singleton subset of N!ev (see below). It contains the event of N
composed with only elementary epsilon events.

Example :
arc>eval

node A

state x : bool;

event a;

trans true |- a ->;

edon

node B

sub a : A;

state x : bool;

event b;

trans true |- b -> ;

edon

arc>EOF

arc>eval

eval>R1(e : B!ev) := true;

eval>R2(e : B!ev) := e. = ’$’;

eval>R3(e : B!ev) := B!epsilon(e);

eval>EOF

R1 (e : B!ev) : complete (4 elements)

R2 (e : B!ev) : 2 elements / 2 nodes

R3 (e : B!ev) : 1 elements / 3 nodes

arc>show R1 R2 R3

R1 contains :

e. in {b, $}, e.a. in {a, $}

R2 contains :

e. = $, e.a. in {a, $}

R3 contains :

e. = $, e.a. = $
arc>

!ev: Type for events of a node
N!ev is the type for events of the node N. An element of N!ev is a vector built
with:

• labels of local events of N

• events of subnodes

The dot notation can be used to access label of events and events of sub-nodes in
the following way. Assume x is a variable of type N!ev then:

• x. is a variable that refers a local events of N. The value of this variable can be
compared with actual labels of local events of N.

• x.sn is a variable of type M!ev where M is the type of sub-node sn.

• x.sn. is a variable that refers to local events of the sub-node sn.

Note that two variables, say e1 and e2, with types respectively, M!ev and N!ev are
not comparable. However e1. and e2. can be compared if sets of labels are equal.

Example :
arc>eval

node A

state x : bool;

Chapter 5: Using the Mec 5 specifications 53

event a, b, c;

trans true |- a, b, c ->;

edon

node B

state x : bool;

event b, c, d;

trans true |- b, c, d ->;

edon

node C

event b, c, d;

trans true |- b, c, d ->;

edon

eval>EOF

arc>eval

eval>R1(e1 : A!ev, e2 : B!ev) := e1 = e2;

eval>EOF

<eval>:1: error: bad expression type.

<eval>:1: error: getting type ’B!ev’.

<eval>:1: error: instead of ’A!ev’.

arc>eval

eval>R2(e1 : B!ev, e2 : C!ev) := e1. = e2.;

eval>EOF

R2 (e1 : B!ev, e2 : C!ev) : 4 elements / 6 nodes

arc>

!init: Set of initial configurations
N!init is a subset of N!c (i.e. assertions hold). The set contains configurations
that respect the initial condition specified by the init clauses of the node (and
sub-nodes).

!move: Unlabelled relation transition
N!move is a subset of N!sc × N!sc. This relation encodes permitted moves be-
tween two assignments of variables. No pre-/post-condition is applied.

!reach: Set of reachable configurations
N!reach is a subset of N!c and contains configurations that are reachable from
initial configurations (see !init relation).

!sc: Type for assignments of variables of node
Objects of the type N!sc are any assignment of variables of N. The difference be-
tween N!sc and N!c is that the elements of the latter are constrained by assertions
of the node.

Example :

arc>eval

eval>node A

flow f : bool;

state s : bool;

assert s != f;

edon

eval>EOF

arc>eval

eval>R(c : A!c) := true;

eval>EOF

R (c : A!c) : 2 elements / 3 nodes

arc>show R

R contains :

c.f = true, c.s = false

c.f = false, c.s = true

arc>eval

Chapter 5: Using the Mec 5 specifications 54

eval>R(v : A!sc) := true;

eval>EOF

R (v : A!sc) : complete (4 elements)

arc>show R

R contains :

v.f in bool, v.s in bool

arc>

!st: Relation transition without assertions
N!st is a subset of N!sc × N!ev × N!sc. This is a transition relation of the node
N between assignments permitted by transitions. Source and target assignments
does not necessarily satisfy assertions.

!t: Relation transition between configurations
N!t, a subset of N!c × N!ev × N!c, the transition relation of the node N. Source
and target configurations are not necessarily reachable from the initial state.

!vs: Assignment of state variables that can satisfy assertions
N!vs is a subset of N!sc. An assignment in N!vs is built from a valid configuration
in N!c by making flow variables free.

!vsc: Transitions between valid state valriables assignments
N!vsc is a subset of N!sc × N!ev × N!sc. N!vsc is the projection of N!t on
valid assignments of state variables i.e. N!vs.

Chapter 6: Stochastic simulation 55

6 Stochastic simulation

AltaRica is a language used to describe discret event systems. Nowadays AltaRica remains
untimed and even if the language allows non-determism on events and flows, no concept of
randomness, in the sense of stochastic process, has been soundly designed to match with the
original AltaRica semantics (see H. Soueidan’s thesis for a try on a restricted version of the
language[hs09], page 69).

In the context of risk assessment it is an actual need to be able to evaluate some measures (e.g.
mean time to failure of the mission) according to known failure rates of elementary components.
Many models are available to achieve this task: fault trees, Markovian processes, stochastic
Petri nets, ...

Since the release 1.6, arc integrates a stochastic simulator for AltaRica models that are
augmented with ad hoc extern clauses. The syntax of these clauses is presented in Section 6.4
[Clauses for stochastic simulation], page 57. The simulator does not accept any AltaRica
model. The constraints that must be fulfilled by input models are given in Section 6.2 [Pre-
requisites on models], page 56.

The proposed extension of AltaRica yields a model closed to generalized stochastic Petri
nets ([GSPN], page 69). In the next section we give an overview of extensions and an informal
description of their semantics.

6.1 Stochastically Timed AltaRica

The extension of our model attachs delays to transitions. A delay is either constant (positive
or null) or randomly determined according to some stochastic law. Let assume for a while that
delays are constants. Let d(T) be the delay attached to a transition T . Now assume that at
instant t, the transition T is enabled; then it will be triggered after d(T) units of time. If T is
disabled before t+ d(T), then the transition is not triggered.

Consider the following example where transitions T1 and T2 are in conflict from state 1; both
are enable at the same time. Now assume that d(T1) < d(T2). After d(T1) units of time, T1 is
triggered and T3 is enabled while T1 and T2 are disabled. Then, after d(T3), T1 and T2 are again
enabled and the execution continues as previously with T1.

�

�

��

�

�� ��

The semantics of the model is a restriction of behaviors allowed by the standard semantics:
here only an alternation of T1 and T3 is possible while in standard AltaRica, the transition T2

can be triggered from state 1.

In the previous example, when T2 is disabled by the triggering of T1, its delay is reset. Now
assume that d(T2) is related to the wear of the component and that in the state 1 the component
is in use (e.g. in a production mode). Then, when T2 is enabled one more time, d(T2) should not
be the same. Our extension permits to specify that remaining delays have to be kept between

Chapter 6: Stochastic simulation 56

two activations. With this memorization mechanism, unless d(T1) = 0, the transition T2 should
be eventually triggered after one or more loops T1 → T3 → T1.

In the case where d(T1) = d(T2), the delay does not determine which transition is triggered.
The transition is selected according to 3 policies:

- Explicit priority. A priority level (a natural number) is attached to each event of the model.
Then the transition with the highest priority is chosen.

- Random choice. A weight is attached to each transition in a conflict; then a random number
is drawn to select the transition according to the specified weights.

- Internal ordering. A transition is selected according to the internal data-structure of the
tool.

The two first policies are not very relevant if they are applied to transitions with stochastic
delays. Actually the probability that two transitions are enabled at the same time and have the
same random delay is negligible with respect to the whole simulation.

The last policy should not be used with deterministic delays. Indeed the triggered transition
is selected according to the implementation of the simulation algorithm. Choosing a transition a
priori creates a bias in statistical results of the simulation. This bias can be correctly interpreted
by the user if this latter knows the selected transition but this is not the case with this policy.

The data used for stochastic simulation are interpreted according to the flat semantics of the
model. No composition operator has been formally designed to yield a compositional stochastic
semantics and the tool must be able to associate to each global event one and only one probability
law. Let 〈c, e1, . . . , en〉 be a synchronization vector of a compound node from which c is the event.
Then, if a law is associated to c then it becomes the law associated to the vector. Else, only
one ei can be associated with a law, which becomes the law of the vector. The reader should
remember that implicit synchronizations exist along the hierarchy which can yield vectors that
not respect the previous constraint. To tackle this drawback,

- either the public attribute is used to avoid implicit synchronization of asynchronous events

- or an explicit law is associated to a control event in the compound node.

6.2 Pre-requisites on models

Stochastic simulation can not be applied to all AltaRica models. We have restricted compu-
tations to models that satisfy following rules:

- Determinism. The model must have only one initial state and, given a source configuration,
a (macro-)transition must have only one target.

- Intrinsic flow orientation. The tools tries to determine if flow variables only depend on state
variables. If this is the case an implicit orientation of flows exists which improves simula-
tion algorithm. Assertions of the model are examined to identify functional dependencies
between variables. To be accepted, the tool must be able to associate to each flow variable
such dependency without creating a cycle.

- No free flow variable. All flow variables must be constrained by an assertion. A free variable
introduces unwanted non-determinism.

- Unicity of laws for global events. As mentioned in previous section, the tool must be able
to associate to each global event a unique probability law.

6.3 Syntax of extern clauses

In versions that precedes arc 1.6, the extern field of nodes was completely permissive. Since
1.6, the syntax of extern declarations has been specialized with the rules given below. All the
rules are not currently used but we kept them to ensure some compatibility with other tools.

Chapter 6: Stochastic simulation 57

The extern field of an AltaRica node is a list of extern-decl separated by semi-colons (;).

An extern-decl has two forms given below. identifier is an AltaRica identifier.

extern-decl ::= identifier extern-term = extern-term

extern-decl ::= identifier extern-term

Then an extern-term is a generic sentence among:

extern-term ::= true

extern-term ::= false

extern-term ::= signed-integer

extern-term ::= real-number

extern-term ::= string

extern-term ::= identifier-path

extern-term ::= identifier ((extern-term,)* extern-term)

extern-term ::= { (extern-term,)* extern-term }

extern-term ::= < flow identifier-path >

extern-term ::= < state identifier-path >

extern-term ::= < event identifier-path >

extern-term ::= < sub identifier-path >

extern-term ::= < local identifier-path >

extern-term ::= < global identifier-path >

extern-term ::= < term (expression) >

where identifier-path is a comma-separated list of identifiers and expression is an AltaRica
expression.

6.4 Clauses for stochastic simulation

The generic syntax given in previous section permits to describe extensions related to stochastic
data.

6.4.1 Parameters

Parameters are identified values that can be used as argument of probabilistic laws. The syntax
for the declaration of parameters is:

parameter identifier-path = param

where param is;

param ::= identifier-path

param ::= real

param ::= uniform (param, param)

param ::= lognormal (param, param)

param ::= normal (param, param)

The last three forms are used to specify random parameters. Before the simulation the value
of parameters are drawn according to specified laws. arc permits the measure of effects of
uncertainties on parameters using several simulations (See Section 3.7 [Stochastic simulation:
sas], page 35).

Following examples illustrate the use of these clauses. In the first the reader should notice
that this clauses can be used out of a node at the top-level scope of the model. This way global
parameters can be declared; here we define a global failure rate THE_LAMBA that can be used
every where a parameter is allowed.

Chapter 6: Stochastic simulation 58

extern parameter THE_LAMBA = 100;

node A

extern

parameter lambda = THE_LAMBA;

parameter frate = lambda;

edon

Below, in node B, the failure rate frate of the subnode a is redefined (it was THE_LAMBA) to
a value local to node B.

node B

sub

a : A;

extern

parameter mylambda = 1000;

parameter a.frate = mylambda;

edon

In this last example, the failure rate of a subnode b, is used to redefine the one of another
subnode a.

node C

sub

a : A;

b : B;

extern

parameter a.frate = b.mylambda;

parameter mylambda = b.a.frate;

edon

6.4.2 Laws

Probabilistic laws can be attached to a single event:

law event = probability-law

where event ::= < event identifier-path >

or to a set of events:

law event-set = probability-law

where event-set ::= { (event,)* event }

Example 1 : The following example is a reparable component described in AltaRica. The repair is
not available just after the failure of the component. Before that it must wait that maintainers
are free. We attach exponential laws to failure and repair events while the arrival of the
maintenance team is an immediate transition.

extern parameter LAMBDA = 1e-3;

extern parameter MU = 1e-2;

node Component

state

mode : ok, wait, maintenance ; init mode := ok;

event

failure, start_maintenance, repair : public;

trans

mode = ok |- failure -> mode := wait;

mode = wait |- start_maintenance -> mode := maintenance;

mode = maintenance |- repair -> mode := ok;

extern

law <event failure> = exponential (LAMBDA);

law <event start_maintenance> = dirac (0);

law <event repair> = exponential (MU);

edon

Chapter 6: Stochastic simulation 59

arc accepts many laws as shown in the following table. They are described more in detail
in Appendix B [Probabilistic laws], page 79.

Law Reference
dirac(δ) Section B.1 [Dirac’s law], page 79
empiric(b1, ..., b12) see Section B.2 [Empiric law], page 79
erlang(m, β) see Section B.3 [Erlang’s law], page 79
exponential(λ) see Section B.5 [Exponential law], page 80
exponential_wow(λ, δ1, ..., δ12) see Section B.6 [Exponential law + Wait On Weather de-

lays], page 80

gen_erlang(λ1, ..., λk) see Section B.4 [Generalized Erlang’s law], page 80
ifa(δ, t0) see Section B.8 [Instants Fixed in Advance], page 81
ipa(δ) see Section B.7 [Instants Provided in Advance], page 81
nlog(m, q) see Section B.9 [Log Normal law], page 81
optional(c1, l1, ..., cn, ln) see Section B.10 [Optional laws], page 82
triangle(a, b, h) see Section B.11 [Triangular law], page 82
truncated_weibull(m, β, α) see Section B.14 [Truncated Weibull’s law], page 84
uniform(a, b) see Section B.12 [Uniform law], page 83
weibull(m, β) see Section B.13 [Weibull’s law], page 83

6.4.3 Observers

Observers are just expressions over variables of the model. arc distinguishes two kind of ob-
servers properties and predicates. Formally, the only difference is the type of the observed
expression; in the first case it is a numerical value while in the second case it is a Boolean one.

The kind of observer only influences statistics that are displayed at the end of the simulation
(see Section 6.5 [Example], page 60).

The syntax for observers is:

property identifier = <term (expression) >

predicate identifier = <term (expression) >

6.4.4 Memorization of delays

It is possible to indicate that the probabilistic law of an event uses a memory. The syntax is the
following:

preemptible event

preemptible event-set

If an event is marked as preemptible, each time it is disabled, the remaining time until its
triggering is memorized.

A synchronization vector is marked as preemptible if one of its components has the flag.

6.4.5 Priority

Priority levels can be assigned to events using the following syntax:

priority event = integer

priority event-set = integer

If some events are in conflict, the one with the highest level of priority will be triggered.

6.4.6 Random choices

Failures on demand can be described using buckets. A bucket gathers several events that are
usually associated with deterministic laws. If events belonging to a bucket are enabled at the

Chapter 6: Stochastic simulation 60

same instant, the triggered one is chosen randomly according to specified weights. The syntax
for describing a bucket is the following:

bucket identifier = { (event, param,)* event }

The identifier is used to identify the bucket and is displayed in results. Each event is followed
by its weight param. Weights are constant parameters and their sum must be < 1. The weight
of the last event is the complement to 1.

Example 2 : Following example is a component with three failure modes. It waits for start

command but it also may fail at start-up:

- either it enter a mode fail_stuck where it ignores the changes of its input i

- or it enters fail_down mode where it always sends false on its output o.

If the component successes to start it enters a running state from which it may also fail with
a failure rate LAMBDA.

A bucket fail_on_start is created to gather events start, fail_stuck and fail_down with
respective weights 0.6, 0.2 and 0.2.

node Component

flow i, o : bool;

state

mode : idle, run, fail_down, fail_stuck ;

stuck_value : bool;

init

mode := idle, stuck_value := false;

event

start, stop, fail_stuck, fail_down, failure : public;

trans

mode = idle |- fail_stuck -> mode := fail_stuck, stuck_value := i;

mode = idle |- fail_down -> mode := fail_down;

mode = idle |- start -> mode := run;

mode = run |- failure -> mode := fail_down;

mode = run |- stop -> mode := idle;

assert

case

mode = run : o = i,

mode = fail_stuck : o = stuck_value,

else o = false

;

extern

parameter LAMBDA = 0.001;

law <event start>, <event stop>,

<event fail_stuck>, <event fail_down> = dirac (0.0);

law <event failure> = exponential (LAMBDA);

bucket fail_on_start =

<event start>, 0.6,

<event fail_stuck>, 0.2,

<event fail_down> ;

edon

6.5 Example

The stochastic simulator is invoked with [sas command], page 35. The following example is a
system with two repairable components and one maintainer i.e. at most one machine is repaired
at each instant.

Four observers are declared in the top-level node to observe combination of failures of ma-
chines.

extern parameter LAMBDA = 1e-4;

extern parameter MU = 4.1666e-2;

node Component

Chapter 6: Stochastic simulation 61

state

mode : ok, wait, maintenance ; init mode := ok;

event

failure, start_maintenance, repair : public;

trans

mode = ok |- failure -> mode := wait;

mode = wait |- start_maintenance -> mode := maintenance;

mode = maintenance |- repair -> mode := ok;

extern

law <event failure> = exponential (LAMBDA);

law <event start_maintenance> = dirac (0);

law <event repair> = exponential (MU);

edon

node Maintainer

state s : idle, work ; init s := idle;

event

start_repair, end_repair;

trans

s = idle |- start_repair -> s:= work;

s = work |- end_repair -> s := idle;

edon

node System

sub

maintainer : Maintainer;

machine : Component[2];

sync

<maintainer.start_repair, machine[0].start_maintenance>;

<maintainer.start_repair, machine[1].start_maintenance>;

<maintainer.end_repair, machine[0].repair>;

<maintainer.end_repair, machine[1].repair>;

extern

predicate all_ok = <term (machine[0].mode = ok & machine[1].mode = ok)>;

predicate all_down = <term (machine[0].mode != ok & machine[1].mode != ok)>;

predicate m1_down = <term (machine[0].mode != ok & machine[1].mode = ok)>;

predicate m2_down = <term (machine[0].mode = ok & machine[1].mode != ok)>;

edon

sas --duration=8760 --nb-stories=8000 --seed=123456781 System

The last line of the file invokes sas. The duration is set to 8760 hours (one year). The failure
rate of component is 1 failure every 10000 hours and the machine are repaired in less than 24
hours.

*** ACTION FREQUENCIES

NAME MEAN STDDEV CONF.

<machine[0].start_maintenance, maintainer.start_repair> 8.68125E-01

9.17382E-01 1.68209E-02

<machine[1].start_maintenance, maintainer.start_repair> 8.65500E-01

9.38627E-01 1.72104E-02

<machine[0].repair, maintainer.end_repair> 8.66625E-01 9.16074E-01

1.67969E-02

<machine[1].repair, maintainer.end_repair> 8.64000E-01 9.37877E-01

1.71967E-02

<machine[1].failure, machine[1].failure> 8.65500E-01 9.38627E-01

1.72104E-02

<machine[0].failure, machine[0].failure> 8.68125E-01 9.17382E-01

1.68209E-02

*** CUMULATED TIME WITH EXPECTED VALUE

NAME MEAN STDDEV CONF.

all_ok 8.71909E+03 4.42254E+01 8.10905E-01

all_down 1.21229E-01 2.32423E+00 4.26165E-02

m1_down 2.06645E+01 3.11001E+01 5.70245E-01

Chapter 6: Stochastic simulation 62

m2_down 2.01222E+01 3.10510E+01 5.69344E-01

*** NUMBER OF OCCURRENCES

NAME MEAN STDDEV CONF.

all_ok 2.72538E+00 1.30160E+00 2.38659E-02

all_down 5.25000E-03 7.22710E-02 1.32514E-03

m1_down 8.68125E-01 9.17382E-01 1.68209E-02

m2_down 8.65500E-01 9.38627E-01 1.72104E-02

*** FIRST OCCURRENCES

NAME MEAN STDDEV CONF.

CENSURED

all_ok 0.00000E+00 0.00000E+00 0.00000E+00

0

all_down 4.47732E+03 2.53250E+03 6.40867E+02

7958

m1_down 3.79482E+03 2.49039E+03 5.97274E+01

3324

m2_down 3.79306E+03 2.49124E+03 6.02657E+01

3404

Chapter 7: Altarica Studio 63

7 Altarica Studio

Current release of arc is accompagnied with the prototype of a small graphical user interface
(GUI) humbly called AltaRica Studio (or AS for short). The aim of as is to help AltaRica
users to validate their models given them rapid access to elementary informations related to
components they describe in their AltaRica files.

7.1 Validation tools

The main window (see Figure 7.1) is divided in 4 parts:

1. A menu that proposes to load a file or to quit as.

2. A toolbar with two buttons: used to refresh displayed data when arc console is used

(see Figure 7.7) and that spawn the graphical simulator (see Section 7.2 [Simulator],
page 66) for the currently selected node.

3. The hierarchy of currenlty loaded AltaRica nodes.

4. A set of tabs that give access to predefined arc commands.

Figure 7.1: Main window of AltaRica Studio

By default the Source tab is selected. This tab displays the code of the constraint automaton
that represents the flat semantics of the selected node.

The second tab, called Validation, request arc to apply [validate command], page 27 to the
selected node and then displays the result. For high-level nodes (e.g. a Main) this computation
can require several minutes; meanwhile as is frozen.

Chapter 7: Altarica Studio 64

Figure 7.2: Results of validate command are displayed in Validation tab.

Next tab, Semantics, displays the state-graph of the selected node. Since such graph is
human-readable for a small number of states, as disables the display of semantics beyond one
hundred of states and a warning window appears if the state graph could have more thatn 15
states. To take this decision as does not actually compute the semantics; it just estimate the
worse case by computing the cardinality of the cartesian product of domains.

The purpose of this tabs is first, and foremost, to ease the validation of smallest components
of the model. With such automata the user can easily check if at least leaf nodes of the system
are valid.

Figure 7.3: State-graph of the selected node.

Chapter 7: Altarica Studio 65

Figure 7.4: When state space is tool large, the graph is not displayed.

Fourth tab permits to display the graph of Acheck commands that have an outputs in dot
format (e.g., mode or dottrace). It suffices to type the command without any with.. do ..

done context.

Figure 7.5: Graph tab displays graph for dot compliant commands.

Fifth tab gathers all computed relations, either with Mec 5 or Acheck specifications. Lines
can be sorted by clicking on the head of the column Relations.

Chapter 7: Altarica Studio 66

Figure 7.6: Name and cardinality of relations already computed.

The last tab permits to interact with the arc process spawned by as. The user can enter
arc commands and results are displayed into the window. Up and down arrows can be used to
visit history of commands.

Figure 7.7: Direct interaction with arc.

7.2 Simulator

When a node is selected and the tool button is pressed, a step-by-step graphical simulator is
started for that node. Several simulators for a same or other nodes can be opened. The main
window of the simulator looks like on the figure Figure 7.8.

The window is divided in several parts:

1. Two arrows permit to go through the simulation stack. An history of visited states is

Chapter 7: Altarica Studio 67

maintained. With these arrows, the user can go forward or backward. These movements
are independant of state changes i.e by triggering transitions or by direct jump to one state
using the mouse.

2. A frame labelled Configurations displays assignments of variables. Variables are presented in
a tree that can be unfolded. In case of non-determinism several configurations are displayed.
In this situation, several columns are displayed and the user selects a configuration by
clicking on the X of the corresponding column.

3. In this area the part of the state-graph explorated so far is displayed. Assignment of
variables is not displayed but it can be viewed in Configurations frame. The current state is
filled in red. Clicking on a state with CTRL key pressed selects the vertex as the new current
configuration. Corresponding assignment is updated in Configurations frame and available
transitions in Transitions frame.

4. Transitions frame lists transitions that can be triggered from the current configuration.
Transitions are gathered according to their labelling event. Under each event is displayed
the guard and assignments of the transitions. Double-clicking on the line containing the
guard triggers the transition. If the set of target configurations is a singleton then it is set
as the current one else, the user has to select one among those proposed in Configurations
frame.

Figure 7.8: The graphical simulator

Chapter 8: References 69

8 References

[ac88] A. Arnold and P. Crubillé. A linear algorithm to solve fixed-point equations on
transition systems. In Information Processing Letters, vol 29, Issue 2, Elsevier,
1988.

[agp99] A. Arnold, A. Griffault, G. Point and A. Rauzy. The AltaRica formalism for de-
scribing concurrent systems. Fundam. Inf. 40, issue 2-3, pages 109-124, IOS Press,
2000.

[akpv11] A. Griffault, F. Kuntz, G. Point and A. Vincent. Symbolic computation of min-
imal cuts for AltaRica models. Research Report n˚1456-11. LaBRI – Université
Bordeaux I, Sep. 2011.

[alta] Web site of the AltaRica Project: http://altarica.labri.fr/.

[av03] A. Vincent. Conception et réalisation d’un vérificateur de modèles AltaRica. Thèse
de l’Université Bordeaux I, 2003.

[cr97] M.-M. Corsini and A. Rauzy. Toupie: the mu-calculus over Finite Domains as
Constraint Language. Journal of Automated Reasonning, Volume 19, Number 2,
pages 143-171, Springer, 1997.

[dot] Graphviz - Graph Visualization Software. http://www.graphviz.org/, 2009.

[eh86] E.A. Emerson and J. Halpern. “Sometimes” and “not never” revisited: on branching
versus linear time. J. ACM 33, pp 151-178, 1986.

[al15] G. Audemard and L. Simon. The Glucose SAT Solver. 2015

[gp00] G. Point. AltaRica: Contributation à l’unification des méthodes formelles et de la
sûreté de fonctionnement . Thèse de l’Université Bordeaux I, 2000.

[gp06] A. Griffault and G. Point. On the partial translation of Lustre programs into the
AltaRica language and vice versa, Research Report n˚1415-06, LaBRI, Nov. 2006.

[mm94] M. Dam. CTL* and ECTL* as fragments of the modal µ-calculus. Theoretical
Computer Science 126, pp. 77-96, Elvesier, 1994

[rl] Web site of the GNU Readline Library .

[hs09] H. Soueidan. Discrete event modeling and analysis for systems biology models.
Thèse de l’Université de Bordeaux I, 2009.

[GSPN] M. Ajmone Marson, G. Balbo, G. Conte, S. Donatelli and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. John Wiley \& Sons, Inc., 1994.

[MW89] M. R. Wingo. The left-truncated Weibull distribution: theory and computation.
Statistical Papers 30, 39–48, Springer Verlag, 1989

[GLU] The Glucose Solver. http://www.labri.fr/perso/lsimon/glucose/. 2017

[RB98] R. Brown. Calendar Queues: A Fast O(1) Priority Queue Implementation for the
Simulation Envent Set Problem. Communications of the ACM. Vol. 31 N. 10.
October, 1998.

http://altarica.labri.fr/pub/publications/altarica.pdf
http://altarica.labri.fr/pub/publications/altarica.pdf
http://altarica.labri.fr/
http://tel.archives-ouvertes.fr/tel-00007067/fr/
http://www.graphviz.org/
http://www.labri.fr/perso/lsimon/glucose/
http://tel.archives-ouvertes.fr/tel-00353284/fr/
http://tel.archives-ouvertes.fr/tel-00353284/fr/
http://hal.archives-ouvertes.fr/hal-00349898/
http://hal.archives-ouvertes.fr/hal-00349898/
http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html
https://tel.archives-ouvertes.fr/tel-01086140/
http://www.labri.fr/perso/lsimon/glucose/

Appendix A: User preferences 71

Appendix A User preferences

This appendix gathers user-definable preferences that modify the behavior of arc. To modify
or simply display the current value of preferences use [set command], page 17.

A.1 Shell

This section lists preferences related to the command-line of arc.

arc.shell.check-card-abort :
Abort the program if the check-card command fails.

Possible values: Booleans

Default value: false

arc.shell.history_file :
The name of the file use to save the history of commands used during the last arc
session.

Possible values: Any valid file name

Default value: ~/.arc history

arc.shell.preprocessor :
arc permits to preprocess AltaRica, Mec 5 or Acheck files. One can assosiate to
filename extensions (except .arc, .lus and .rel) a program used as a preprocessor.
To specify that files terminating with the extension .ext must be preprocessed using
a specific program, set the preference arc.shell.preprocessor.ext.command to
the a string that contains the name of the executable (that must accessible via the
PATH environment variable). A %s in the specified string indicates the position of
the file to process. If no %s is found then the filename is just concatenated with the
specified command and a separating white space.

Additional arguments can be appended to the command using the preferences
arc.shell.preprocessor.ext.args. Such additional arguments are added each
time the preprocessor is called.

If ARC can not associate a preprocessor to an extension it looks
for preferences for arc.shell.preprocessor.default.command and
arc.shell.preprocessor.default.args. If these latters are not set the file is
parsed as-is.

Note that the parser handles #line indications generated by certain preprocessors.

Examples: With the following setting, any file F with the extension .php are pre-
processed with the command php F 5.

set arc.shell.preprocessor.php.command "php"

set arc.shell.preprocessor.php.args "5"

Possible values: String

Default value: none

arc.shell.prompt.0 :
The level 0 prompt.

Possible values: Any character string without newline

Default value: arc>

arc.shell.prompt.1 :
The level 1 prompt.

Possible values: Any character string without newline

Default value: .

Appendix A: User preferences 72

arc.shell.verbose :
Enable/disable (verbose) informative messages emitted by the ARC shell.

Possible values: Booleans

Default value: true

A.2 Acheck

This section list preferences related to Acheck specifications.

acheck.cleanup-semantics :
Enable/disable the deletion of semantics after computation.

Possible values: Booleans

Default value: false

acheck.dot-diff-state-mode :
When Acheck uses Decision Diagrams engine, this option specifies how dot com-
mand outputs configurations. Four modes are available:

• none: configurations are displayed as-is.

• post: project configurations on variables that are changed by a step forward
(i.e a ‘post’). Variables that keep their value after any outgoing transition are
not displayed.

• pre: only variables that have a value different from at least on predecessor of
the configuration are kept and displayed.

• both: apply post and pre.

Possible values: none, post, pre, both

Default value: none

acheck.nrtest-failure-aborts :
Aborts program if non-regression tests (nrtest command) fail.

Possible values: Booleans

Default value: false

acheck.timers :
Enable/disable timers for acheck computations.

Possible values: Booleans

Default value: false

A.3 Mec V

This section list preferences related to Mec 5 specifications.

mec5.timers :
Enable/disable timers for Mec 5 computations.

Possible values: Booleans

Default value: false

A.4 Translation of AltaRica models into Lustre programs

Here are preferences related to the to-lustre command.

translators.a2l.deterministic :
InAltaRica nodes an event can be used for several (macro-)transitions; this feature
permits to create non-deterministic behaviors. Since non-determinism is not suitable

Appendix A: User preferences 73

in the context of Lustre, this preference (if true) can be use to enforce (with an
assertion) that only one of the possible (macro-)transitions is authorized.

Possible values: Booleans

Default value: true

translators.a2l.enum-prefix :
AltaRica permits the use of symbolic values (like ’enum’s in C). Each such value
is translated into Lustre as a global integer constant. In order to prevent identifier
conflicts a prefix (defined by this preference) is added to each symbolic value.

Possible values: Identifier

Default value: ENUM

translators.a2l.event-var-suffix :
Prefix added to each identifiers of events.

Possible values: Identifier

Default value:

translators.a2l.flow-var-prefix :
Prefix added to each identifiers of flow variables.

Possible values: Identifier Default value: f

translators.a2l.guard-var-prefix :
Prefix of local variables used to store the current variable of guards.

Possible values: Identifier

Default value: ec

translators.a2l.missing-init-prefix :
If a state variable is not initialized then a dummy parameter is added to the Lustre
node. This dummy parameter is used to initialize the state variable. The name of
the dummy parameter is the concatenation of this setting and the name of the state
variable.

Possible values: Identifier

Default value: INIT VAL

translators.a2l.noinput-name :
If an AltaRica node does not use any variable with an ’in’ attribute then a dummy
variable is created. The identifier of this variable is defined by this preference.

Possible values: Identifier

Default value: noinput

translators.a2l.noreturn-name :
If anAltaRica node does not use any variable with an ’out’ attribute then a dummy
variable is created. The identifier of this variable is defined by this preference.

Possible values: Identifier

Default value: noreturn

translators.a2l.parameter-prefix :
Prefix added to each identifiers of parameters.

Possible values: Identifier

Default value: p

translators.a2l.show-sections :
Enable/disable comments identifying parts of the produced code.

Appendix A: User preferences 74

Possible values: Booleans

Default value: true

translators.a2l.signature-arg-prefix :
Prefix of arguments of external functions

Possible values: Identifier

Default value: arg

translators.a2l.signature-ret-suffix :
Suffix of the return value for external functions

Possible values: Identifier

Default value: return

translators.a2l.state-var-prefix :
Prefix added to each identifiers of state variables.

Possible values: Identifier

Default value: s

translators.a2l.verbose :
Enable/disable the display of timers for acheck computations

Possible values: Booleans

Default value: true

translators.a2l.warning :
Enable/Disable the display of warnig messages.

Possible values: Booleans

Default value: true

A.5 Translation of Lustre programs into AltaRica models

This section lists preferences related to the translator of Lustre programs into AltaRica.

translators.l2.clock-event-name :
All translated nodes used one event (in addition to epsilon – ε). This event is used
at the top-level to synchronize all nodes together.

Possible values: Identifier

Default value: clock

translators.l2.initial-state-name :
If a Lustre node is not purely functional i.e. it uses pre like operators, then the
translator uses a new state variable to encode the fact that the node is initialized or
not. The initial state is used to initialized the actual state variables of the Lustre
node.

Possible values: Identifier

Default value: is init

translators.l2.integers.as-range :
If this preference is set to true then each occurrence of the int type in the
Lustre code is replaced by a range of integers in the AltaRica model. The
bounds of the range are defined with the translator.l2a.integers.min and
translator.l2a.integers.max preferences.

Possible values: Booleans

Default value: false

Appendix A: User preferences 75

translators.l2.integers.max :
If translator.l2a.integers.as-range is true then the value specified by this
preference is used as the upper bound of the range used in replacement of the int

type.

Possible values: Integer

Default value: 10

translators.l2.integers.min :
If translator.l2a.integers.as-range is true then the value specified by this
preference is used as the lower bound of the range used in replacement of the int

type.

Possible values: Integer

Default value: -10

translators.l2.pre-var-prefix :
The use of the ’pre’ operator in the Lustre code induces the creation of state variables
in the AltaRica node. This preference defines the common prefix for all such
variables.

Possible values: Identifier

Default value: pre

translators.l2.reals.add :
Identifier of the signature of the addition between reals.

Possible values: Identifier

Default value: real add

translators.l2.reals.div :
Identifier of the signature of the division between reals.

Possible values: Identifier

Default value: real div

translators.l2.reals.geq :
Identifier of the signature of the ≥ relation over ’real’s.

Possible values: Identifier

Default value: real geq

translators.l2.reals.gt :
Identifier of the signature of the > relation over reals.

Possible values: Identifier

Default value: real gt

translators.l2.reals.leq :
Identifier of the signature of the ≤ relation over reals.

Possible values: Identifier

Default value: real leq

translators.l2.reals.lt :
Identifier of the signature of the < relation over reals.

Possible values: Identifier

Default value: real lt

translators.l2.reals.mod :
Identifier of the signature of the modulo between reals.

Appendix A: User preferences 76

Possible values: Identifier

Default value: real mod

translators.l2.reals.mul :
Identifier of the signature of the multiplication between reals.

Possible values: Identifier

Default value: real mul

translators.l2.reals.neg :
Identifier of the signature of the opposite of a real number.

Possible values: Identifier

Default value: real neg

translators.l2.reals.sub :
Identifier of the signature of the substraction between reals.

Possible values: Identifier

Default value: real sub

translators.l2.reals.typename :
Identifier of the abstract type used in place of real.

Possible values: Identifier

Default value: REALS

translators.l2.reals.zero :
Identifier of the abstract constant of type ’real’ encoding zero.

Possible values: Identifier

Default value: real zero

translators.l2.struct_field_prefix :
Composite types of Lustre are replaced by structures in AltaRica. This preference
is used to name fields of such structures.

Possible values: Identifier

Default value: field

translators.l2.subnodes-prefix :
Each node call in the Lustre code implies the creation of a sub-node in theAltaRica
node of the caller. Each sub-node is identified with a name of the form prefi where
pref is the prefix specified by this setting and i is an integer.

Possible values: Identifier

Default value: sc

translators.l2.tmp_flow_var_prefix :
The translator may create auxiliary variables in the AltaRica (e.g. to store sub-
expression values. This preference sets the prefix of such variables.

Possible values: Identifier

Default value: f tmp

translators.l2.verbose :
Enable/disable the display of informatives messages during the translation.

Possible values: Booleans

Default value: true

Appendix A: User preferences 77

translators.l2.warning :
Enable/disable the display of warning messages.

Possible values: Booleans

Default value: true

Appendix B: Probabilistic laws 79

Appendix B Probabilistic laws

In this chapter we list probabilistic laws available for stochastic simulation. For each law we
give its syntax and the algorithm use to generate random delays according to the cumulative
distribution function (CDF) of the law.

Graphical representations of functions are taken from from Wikipedia website.

B.1 Dirac’s law

This law permits to attach constant delays to events. Whatever the current instant is, the event
will be triggered after the specified delay δ.

Syntax: dirac(δ)

where δ is any valid parameter (Section 6.4.1 [Parameters], page 57).

Random delay generation:

- return δ

B.2 Empiric law

The empiric law describes n equiprobable classes: [b1, b2[, [b2, b3[, . . . , [bn, bn+1[. The cumulative
distribution F (t) of the law is a piecewise linear function defined by:

• F (t) = 0 if t ≤ b1

• F (t) = 1
n
(t
bi+1−bi + i− 1) if bi ≤ t < bi+1 for i ∈ {1, . . . , n}

• F (t) = 1 if bn+1 ≤ t
Syntax: empiric(b1, ..., bn+1)

where each bi is any valid parameter (Section 6.4.1 [Parameters], page 57).

Random delay generation:

- let z be a random number uniformly drawn in [0,1].

- let i = bn.zc+ 1

- return bi + (bi+1 − bi)(n.z − bn.zc)

B.3 Erlang’s law

This law specifies that delays follow an Erlang distribution parameterized its mean m and its
order k.

Syntax: erlang(m, k)

where m and k are parameters (Section 6.4.1 [Parameters], page 57).

Figure B.1: PDF and CDF of Erlang’s law (θ = m/k is the scale of the law)

Random delay generation:

Appendix B: Probabilistic laws 80

- let z1, . . . , zk be random numbers uniformly drawn in [0,1].

- let λ = k
m
.

- return − 1
λ
ln(z1 × . . .× zk)

B.4 Generalized Erlang’s law

While the Erlang’s law represents the sum of k exponential variables with a common rate λ, the
gen_erlang allows to specify differents rates λis.

Syntax: gen_erlang(λ1, ..., λk)

where λi are valid parameters (Section 6.4.1 [Parameters], page 57).

Random delay generation:

- let z1, . . . , zk be random numbers uniformly drawn in [0,1].

- return −Σi=1 sup k
ln(zi)

λi

B.5 Exponential law

Exponential law is attached to events with a constant rate of occurrence lambda (i.e. the number
of occurrences per time unit).

Syntax: exponential(λ)

where λ is any valid parameter (Section 6.4.1 [Parameters], page 57).

Figure B.2: PDF and CDF of exponential law for different rate λ.

Random delay generation:

- let z be a random number uniformly drawn in [0,1].

- return − ln(z)

λ
if z > 0 or 0.0 else.

B.6 Exponential law + Wait On Weather delays

This law is applied to models for which the time unit is the hour. Its allows to add to an
exponential delay a constant value that depends on the current month. Basically this law
has been designed to express the additional time for maintenance operations due to weather
conditions (the delay change according to current month).

Syntax: exponential_wow(λ, δ1, ..., δ12)

where:

• λ and δis are valid parameters (Section 6.4.1 [Parameters], page 57). λ is the rate of the
exponential law and δi is the constant additional delay for the i sup th month.

Random delay generation:

- let z be a random number uniformly drawn in [0,1].

Appendix B: Probabilistic laws 81

- if T is the current time then let i = bT/730c mod 12 + 1.

- return δi − ln(z)

λ
if z > 0 or δi else.

B.7 Instants Provided in Advance

This law is deterministic; it allows to specify delays that match a constant period τ from the
start of the simulation.

Syntax: ipa(τ)

where τ 6= 0 is any valid parameter (Section 6.4.1 [Parameters], page 57).

Random delay generation:

- let T be the current time

- return

• τ − (T mod τ) if T > τ

• τ − T else

B.8 Instants Fixed in Advance

This law is similar to ipa. It is deterministic and allows to specify delays that match a constant
period τ from an initial t0. Actually ipa(τ) = ifa(τ, 0).

Syntax: ifa(τ, t0)

where τ and t0 are valid parameters (Section 6.4.1 [Parameters], page 57).

Random delay generation:

- let T be the current time

• τ − ((T − t0) mod τ) if T > t0

• t0 − T else

B.9 Log Normal law

This law allows the use of delays that follow log-normal distribution parameterized by its mean
m and q its error factor to 5%. These parameters correspond to parameters σ and µ of the
underlying normal law as follows: σ = ln(q)/1.645 and µ = ln(m)− σ sup 2/2.
Syntax: nlog(m, q) where m and q are valid parameters (Section 6.4.1 [Parameters], page 57).

Figure B.3: PDF of log-normal law

Random delay generation:

- let z1 and z2 be a random numbers uniformly drawn in [0,1].

Appendix B: Probabilistic laws 82

- let d =
√
−2× ln(z1)× cos(2πz2)

- let σ = ln(q)/1.645 and µ = ln(m)− σ sup 2/2.
- return exp(σd+ µ)

B.10 Optional laws

This law permits to apply laws according to some conditions. The arguments of optional is a
list of couples (ci, li) where ci is a Boolean expression on variables and li is a any kind of law
except an optional one. When the associated event is enabled, the cis are checked in order and
if ci is evaluated to true according to the current configuration of the model, then li is used to
compute the delay applied to the event. Obviously at least one of the cis must be evaluated to
true when the event is enabled.

Syntax: optional(c1, l1, . . ., cn, ln)

with

ci ::= any valid AltaRica expression

li ::= any not-optional law

Random delay generation:

- let i be the smallest integer such that ci is true.

- return the random delay for law li.

B.11 Triangular law

This law is used when the random delay is known to be a range [a, b] and that its most probable
value is c ∈ [a, b].

Syntax: triangle(a, b, c)

where a, b and c are parameters such that a < b and a ≤ c ≤ b.

Figure B.4: PDF and CDF of the triangular law

Random delay generation:

- let z be a random number uniformly drawn in [0,1].

- let F c =
(c−a)

(b−a)
, φ1 =

√
(c− a)(b− a), φ2 =

√
(b− c)(b− a).

- return:

• a if z = 0 then return

• a+ φ1

√
z if z < F c

• b+ φ2

√
1− z if z < 1

• b if z = 1

Appendix B: Probabilistic laws 83

B.12 Uniform law

This law is used for delays that are uniformly distributed in a range [a, b].

Syntax: uniform(a, b)

where a and b are valid parameters (Section 6.4.1 [Parameters], page 57).

Figure B.5: PDF and CDF of uniform law with parameters a and b.

Random delay generation:

- let z be a random number uniformly drawn in [0,1].

- return a+ (b− a)z

B.13 Weibull’s law

This laws permits to specify Weibull distribution parameterized by its mean m and its shape k.
Sometimes the scale parameter λ = Γ(1 + 1

k
)/m is used instead of m.

Syntax: weibull(m, k)

where m and k are valid parameters (Section 6.4.1 [Parameters], page 57).

Figure B.6: PDF and CDF of weibull law for different values of the shape k and scale λ.

Random delay generation:

- let z be a random number uniformly drawn in [0,1].

- let λ = Γ(1 + 1
k
)/m

- return (−ln(z)) sup 1/k/λ

Appendix B: Probabilistic laws 84

B.14 Truncated Weibull’s law

This law is the shifted left truncated Weibull distribution[MW89], page 69 described using its
mean m, its shape β and its age (or shift) α. Its CDF is given by the following formula:

F (t) = 1− exp(λ(α supβ − (t+ α) supβ))

where λ = (Γ(1+1/β)

m
) supβ

Syntax: truncated_weibull(m, β, α)

where m, β and α are valid parameters (Section 6.4.1 [Parameters], page 57).

Random delay generation:

- let z be a random number uniformly drawn in [0,1].

- let d0 = 1
β

- let d1 = (αΓ(1+d0)

m
) supβ

- return α.(((1−ln(z))

d1
) sup d0 − 1)

	Introduction
	Where to get ?
	Where to send bug reports, comments or requests for new features ?

	 at a glance
	The game
	The model
	Getting started with
	First computations
	Computing the winning strategy

	The arc command
	Interactions with
	General purpose commands
	apropos
	cd
	echo
	eval
	exit
	gc
	help
	info
	list
	load
	pwd
	remove
	set
	show
	timer

	Commands related to AltaRica nodes
	ca
	depgraph
	flatten
	node-info
	obfuscate
	solve
	stepper
	target-reduction
	to-lustre
	validate
	chkctl

	Commands related to computations using exhaustive engine
	ts
	ts-marks
	show-ts-marks

	Commands related to relations
	card
	check-card
	pick
	store

	Computation of sequences and fault trees: cuts and sequences
	Stochastic simulation: sas
	Experimental commands
	diag
	sat

	Using the specifications
	Overview
	Representation of the semantics
	Computing properties of nodes
	Built-in sets
	Sets of configurations
	Sets of transitions

	Operators
	Using CTL* logic

	Commands

	Using the specifications
	{Writing predicates}
	Built-in relations

	Stochastic simulation
	Stochastically Timed
	Pre-requisites on models
	Syntax of extern clauses
	{Clauses for stochastic simulation}
	{Parameters}
	{Laws}
	{Observers}
	{Memorization of delays}
	{Priority}
	{Random choices}

	Example

	Altarica Studio
	{Validation tools}
	{Simulator}

	References
	User preferences
	Shell
	Acheck
	Mec V
	Translation of models into programs
	Translation of programs into models

	Probabilistic laws
	Dirac's law
	Empiric law
	Erlang's law
	Generalized Erlang's law
	Exponential law
	Exponential law + Wait On Weather delays
	Instants Provided in Advance
	Instants Fixed in Advance
	Log Normal law
	Optional laws
	Triangular law
	Uniform law
	Weibull's law
	Truncated Weibull's law

