
AltaRica Examples

The lift∗

A. Griffault, G. Point
LaBRI - CNRS - Université Bordeaux

April 22, 2024

Contents

1 Informal specification of the lift 2

2 Roadmap to the model 2
2.1 The number of floors . 2
2.2 Users . 3
2.3 What kind of modelling to use ? 3

3 The model 4
3.1 Buttons . 4
3.2 Doors . 5
3.3 Floors . 5
3.4 The cage . 6
3.5 The whole system . 7

4 Analysis and results of the system 8
4.1 Safety properties . 9
4.2 Liveness property . 11
4.3 Checking the model . 11

This modelling example is inspired from Laroussinie’s thesis[1]. Starting
from informal specifications, this “exercise” consists to build a model of a lift
that satisfies given requirements.

∗This example is extracted from AltaRica Handbook.

1

1 Informal specification of the lift

The studied lift serves n floors. The cage is equipped with n light buttons that
permit to select one or more destinations; when a button is lighted there exists
a request for the corresponding floor. Each floor has a similar button used to
ring for the lift. When the cage stops at a floor its door opens automatically.

At each time, a software controller chooses the next thing to do between :
open a door, close a door, go up, go down or nothing. The owner of the building
wants that following requirements have been proved.

1. When a button is push, it lights.

2. When the corresponding service is done, it lights off.

3. At each floor, the door is close if the lift is not here.

4. The software opens the door at some floor only if there is some requests
for that floor.

5. If there is no request, the lift must stay at the same floor.

6. When the lift moves, it must stop where there is a request.

7. When there are several requests, the software must (if necessary) continue
in the same direction than its last move.

8. Each request must be honored a day.

2 Roadmap to the model

2.1 The number of floors

With finite model-checking we cannot prove a property with parameters. For
that, we need theorem proving method. So we need to fix the number of floors.
1000 seems a good choice since no building in the world have so much floors,
but no model checker in the world can deal with such model. On the opposite,
every model checker can deal with a building with only one floor, but a lift is
not usefull in such a building. In addition, most of the properties are tautology
for a one floor building.

The model assumes the lift serves 4 floors. This choice is justified as follows:

1. Two floors are not enough because behaviours of the lift are, in this case,
necessarily fair. Actually, with only two floors, the cage passes to one floor
as many times as the other one.

2. Three floors could be sufficient, but in this case, every traversal starts
and/or ends at the ground-floor or at the last one. This specificity may
impact results related to fairness properties.

2

3. Four floors seem enough.

4. Floors beyond the fourth seem redundant. If N ≥ 4 is the number of floors,
we consider the following partition of floor numbers as follows: {1}, {2},
{3, . . . , N − 1}, {N}. Then we associate to each subset the number of a
floor for a lift serving 4 floors: {1} → 1, {2} → 2, {3, . . . , N − 1} → 3,
{N} → 4. We are prone to believe that any property satisfied by a 4-floors
lift should be satisfied by a N -floors lift for N > 4.

Actually above arguments are not proofs but are just remarks imposed by
common sense.

In the sequel we will use the following definitions.

const NB FLOORS = <?php echo $NB FLOORS ?>;
const GROUND FLOOR = <?php echo $GROUND FLOOR ?>;
const TOP FLOOR = GROUND FLOOR + NB FLOORS − 1;
domain CageLocation = [GROUND FLOOR, TOP FLOOR];

Note the use of PHP code. In the sequel of this example, arc requests PHP
preprocessing for each loaded file. php is invoked using following settings in arc:

set arc.shell.preprocessor.default.command \

"php -d short_open_tag=On -r ’$NB_FLOORS = 4; $GROUND_FLOOR = 1; \

$TOP_FLOOR = $GROUND_FLOOR+$NB_FLOORS-1; \

include ($argv[1]); ?>’"

2.2 Users

The environment is not addressed by our model. Actually the environment is
composed by an unbounded number of users. In the model, such environment
can not be described because, actually, it requires to bound this number of
users. In abscence of users, requests are described using uncontrollable actions
on buttons (whose operator is ignored). Surprisingly, this method permits to
handle behaviours of an unbounded number of users.

2.3 What kind of modelling to use ?

There is a choice to do regarding the abstraction level used to build the model.
Do we take a functional point of view or do we have to go further down to
implementation level ?

Functional level: Both buttons related to a same floor can be merged: indeed,
it does not matter that one button is n-th floor and the other in the cage.

Implementation level: The buttons, at a floor and in the cage, should no
use the same means to communicate the control software: the first is at a
static location while the second can move.

As it has been mentioned in introduction, we face a modelling exercise. We
do not try to model an actual lift in order to study its behaviours but, we rather
try to build one with some expected properties.

Thus, the model should adopt the functional point of view.

3

Button

light = false

off

light = true
push

off

push

Figure 1: Semantics of the Button node.

3 The model

The model is based on the modelling of four physical objects: the buttons,
the door, the floors and the cage. Obviously the model also describes their
“straightforward” interactions. The model is composed with:

• Four floors and a cage.

• A door and four buttons in the cage.

• A door and a button at each floor.

3.1 Buttons

There are many ways to model buttons. For this system a switch, i.e., a button
that alternates between two positions, is not appropriate because users may
press several times the buttons without alternation. The model of button in-
forms its environment of its state (lit or not) using a flow variable light.

Another choice is to decide if a button can be putted off (by the controller)
while being already off. We decide to allow these behaviours.

node Button
flow light : bool;
state on : bool;
init on := false;
event push : public;

off;
trans
true |− push −> on := true;
true |− off −> on := false;

assert
light = on;

edon

The reader should have notice the use of public attribute on push event.
We use this trick to ensure the strict asynchronism of the events. Actually, two
buttons could be pressed simultaneously but it does not impact the behaviours
of the whole system.

The semantics of this model is depicted on figure 1.

4

Door

is_closed = true is_closed = false
open

close

Figure 2: Semantics of the Door node

3.2 Doors

The model of the door makes no surprise. The reader should note that the
initial state of the door is already set to closed and its internal state is shared
with its environment via a flow variable.

The semantics of this node is given on figure 2.

node Door
flow is closed : bool;
state closed : bool;
init closed := true;
event open, close : public;
trans
closed |− open −> closed := false;
not closed |− close −> closed := true;

assert
is closed = closed;

edon

3.3 Floors

A floor is made of a button and a door. The floor puts the button off when the
request for this floor has been fulfilled. To model this phenomenon we have to
define when the service is done at the floor; it can be either at the opening or
at the closing of the door. We choose the latter case.

We use two local events, open and close, to expose opening and closing of
the door at the floor.

A flow variable requested is used to inform the controller that this floor
has been requested via its button. Obviously the variable is set to the state of
the button.

The semantics of this node is depicted on figure 3.

node Floor
flow requested : bool : public;
sub B : Button;

D : Door;
event open, close;
trans true |− open, close −>;
sync <close, D.close, B.off>;

<open, D.open>;
assert

requested = B.light;
edon

5

Floor

D.is_closed = true, requested = false

D.is_closed = true, requested = true

(B.push, B.push)

D.is_closed = false, requested = false

(open, D.open)

(B.push, B.push)

D.is_closed = false, requested = true

(open, D.open)

(close, D.close, B.off)

(B.push, B.push)

(close, D.close, B.off)

(B.push, B.push)

Figure 3: Semantics of the Floor node.

3.4 The cage

A state variable loc models the location of the cage; the controller knowns this
location via the flow variable floor. We assumed the cage is at ground floor in
the initial configuration. loc variable is modified by two events, up and down,
that model moves of the cage. The cage moves only if its door is closed thus,
up and down are guarded according to the state of the door.

We can send the off signal to the appropriate button when the corresponding
request is satisfy. We made the same choice as for the floor regarding the
meaning of the service is done; buttons are put off when the door is closing.

An array of Booleans, request, is used to indicate the controller recorderd
requests from the cage.

node Cage
flow

request : bool[NB FLOORS];
floor : CageLocation;

state loc : CageLocation;
init loc := GROUND FLOOR;
sub D : Door;

B : Button[NB FLOORS];
event up, down, close[NB FLOORS], open;
trans D.is closed |− up −> loc := loc + 1;

D.is closed |− down −> loc := loc − 1;
D.is closed |− open −>;

assert floor = loc;
sync <open, D.open>;

// for i = 0 ... N−1:
// assert request[i] = B[i].light
// trans ˜D.is closed & floor = i |− close[i] −> ;
// sync <close[i], D.close, B[i].off>;

<?php for ($i = 0 ; $i < $NB FLOORS; $i++) { ?>
assert request[<?=$i?>] = B[<?=$i?>].light;
trans ˜D.is closed & floor = <?=$GROUND FLOOR+$i?> |−

close[<?=$i?>] −> ;
sync <close[<?=$i?>], D.close, B[<?=$i?>].off>;

<?php } ?>
edon

6

The semantics of the node is too large to be depicted on a figure; ARC tool
tells us:

/*

* Properties for node : Cage

* # state properties : 1

*

* any_s = 128

*

* # trans properties : 1

*

* any_t = 864

*/

3.5 The whole system

The model that describes the whole system consists of a Cage and four Floors.
We use private flow variables to make local computation:

• requestDown indicates if there exists a request to a floor that is down the
current position of the cage;

• requestUp indicates if there exists a request to a floor that is up the
current position of the cage;

• request is an array of N Booleans; request[i] is true if there exists a
request for the i-th floor.

The opening is allowed at some floor only is there is some request to that
floor. The controller has N events open[i] guarded by this condition. Synchro-
nizations vectors are used to model the synchronous opening or closing of doors
of the cage and of the floors.

<open[i],C.open, F[i].open>;
<C.close[i], F[i>].close>;

We use PHP preprocessor to generate synchronization vectors and assertions
which makes the model not so easy to read but comments should help.

node Main1
sub
F : Floor[NB FLOORS];
C : Cage;

flow
requestUp, requestDown : bool : private;
request : bool[NB FLOORS] : private;

event down, up, open[NB FLOORS];

trans
requestDown |− down −> ;
requestUp |− up −> ;

sync <up, C.up>;
<down, C.down>;

7

// For i = 0 ... N − 1:
// assert request[i] = (C.request[i] | F[i].requested);

<?php for ($i = 0; $i < $NB FLOORS; $i++) { ?>
assert request[<?=$i?>] = (C.request[<?=$i?>] |

F[<?=$i?>].requested);
<?php } ?>

// assert requestUp =
// For i = 0 ... N−2,
// (C.floor = i &
// (for i < j < N, C.request[j] | F[j].requested))
assert requestUp = (

<?php for ($f = 0; $f < $NB FLOORS−1; $f++) { ?>
(C.floor = <?=$GROUND FLOOR + $f?> & (

<?php for ($r = $f + 1; $r < $NB FLOORS; $r++) { ?>
request[<?=$r?>]

<?php if ($r != $NB FLOORS−1) echo " |"; } ?>
))

<?php if ($f != $NB FLOORS−2) echo " |"; } ?>
);

// assert requestDown =
// For i = 1 ... N−1,
// (C.floor = i &
// (for 0 <= j < i, C.request[j] | F[j].requested))
assert requestDown = (

<?php for ($f = 1; $f < $NB FLOORS; $f++) { ?>
(C.floor = <?=$GROUND FLOOR + $f?> & (

<?php for ($r = 0; $r < $f; $r++) { ?>
request[<?=$r?>]

<?php if ($r != $f−1) echo " |"; } ?>
))

<?php if ($f != $NB FLOORS−1) echo " |"; } ?>
);

// For i = 0 ... N − 1:
// trans (C.floor=i) & request[i] |− open[i] −> ;
// sync <open[i], C.open, F[i].open>;
// <C.close[i], F[i].close>;

<?php for ($i = 0; $i < $NB FLOORS; $i++) { ?>
trans (C.floor=<?=$GROUND FLOOR+$i?>) & request[<?=$i?>] |−

open[<?=$i?>] −> ;

sync <open[<?=$i?>],C.open, F[<?=$i?>].open>;
<C.close[<?=$i?>], F[<?=$i?>].close>;

<?php } ?>
edon

4 Analysis and results of the system

The analysis of this model is realized using ARC model-checker. We have to
prove the truth of eight properties. The first seven are safety properties while
the last one is a liveness property.

8

4.1 Safety properties

Safety properties describe invariants i.e. properties that must be true in all
configurations of the system. To prove these properties using arc we compute
sets of configurations that do not satisfy the specified invariant and we check if
this set is empty or not. If not, the model does not satisfy the property.

4.1.1 When a button is push, it lights

This property is falsified if after a push event on a button B its state is off.
We compute the set notP1 that is the union for each button B of reachable
configurations that are the target configuration of B.push but with B.light
equal to false.

For each floor i the following set should be empty:

(tgt(label F[i].B.push) & [not F[i].B.light]) |

(tgt(label C.B[i].push) & [not C.B[i>].light])

Specifications passed to arc is the following:

notP1 :=
<?php for ($i = 0; $i < $NB FLOORS; $i++) { ?>

(tgt(label F[<?=$i?>].B.push) & [not F[<?=$i?>].B.light]) |
(tgt(label C.B[<?=$i?>].push) & [not C.B[<?=$i?>].light])

<?php if ($i != $NB FLOORS−1) echo " |"; } ?>;

4.1.2 When the corresponding service is done, it lights off.

Throughout the modelling process we have assumed that the service is done at
floor i when its door becomes closed. Configurations that do not satisfy this
invariant are the target of a closure event from some floor i but with a a button
for i-th floor that is yet lit.

For each floor i the following set should be empty:

(any s & tgt (label F[<i>].close) & [request[i]])

Note the use of predefined set any s that contains reachable configurations.
Here its use is mandatory because some unreachable configurations do not re-
spect invariant P2.

Specifications passed to arc is the following:

notP2 :=
<?php for ($i = 0; $i < $NB FLOORS; $i++) { ?>

(any s&tgt (label F[<?=$i?>].close) & [request[<?=$i?>]])
<?php if ($i != $NB FLOORS−1) echo " |"; } ?>;

4.1.3 At each floor, the door is close if the lift is not here.

This property is straightforward. A configuration does not satisfy invariant P3

if the door of some floor i is open while the cage is at some other floor j 6= i.
For each floor i the following set should be empty:

9

(any s & [C.floor != i & not F[i].D.closed])

Specifications passed to arc is the following:

notP3 :=
<?php for ($i = 0; $i < $NB FLOORS; $i++) { ?>

(any s & [C.floor != <?=$i+$GROUND FLOOR?> & not
F[<?=$i?>].D.closed])

<?php if ($i != $NB FLOORS−1) echo " |"; } ?>;

4.1.4 The software opens the door at some floor only if there is some
requests for that floor.

Here we describe a property on transitions. P4 is falsified if there exists a
transition that open the door of some floor i from a configuration where no
request exists for i-th floor. This is specified as follows:

(label F[i].D.open - rsrc([request[i]]))

Specifications passed to arc is the following:

notP4 :=
<?php for ($i = 0; $i < $NB FLOORS; $i++) { ?>

(label F[<?=$i?>].D.open − rsrc([request[<?=$i?>]]))
<?php if ($i != $NB FLOORS−1) echo " |"; } ?>;

4.1.5 If there is no request, the lift must stay at the same floor.

Similarly to P4 we prove P5 with the emptyness of a set of transitions. This set
of bad transitions should move the cage while there is no request. Transitions
that move the lift are those labelled with controller’s events up or down; we check
there is no such transition triggered from a configuration where there exists a
request.

We write this set of bad transitions:

(label C.up | label C.down) - rsrc([request[0]|...|request[N-1]])

Specifications passed to arc is the following. We have constraint the set to be
in any t to be sure to consider only transitions between reachable configurations:

notP5 := any t & ((label C.up | label C.down) −
rsrc([request[0]

<?php for ($i = 1; $i < $NB FLOORS; $i++) { ?>
|request[<?=$i?>]

<?php } ?>]));

4.1.6 When the lift moves, it must stop where there is a request.

P6 is not satisfied if there exists a transitions that moves the cage while it is at
some floor i and there exists a request for this floor. Yet, if such bad transition
exists, it is labelled with up or down and is triggered from a configuration where,
for some i, C.floor equals i and request[i] is true. We compute the set of
transitions:

10

(label C.up | label C.down) &

rsrc([C.floor[0] \& request[0]] |

...

[C.floor[N-1] \& request[N-1]])

Specifications passed to arc is the following:

notP6 := any t &
((label C.up | label C.down) &
rsrc([C.floor = <?=$GROUND FLOOR?> & request[0]]

<?php for ($i = 1; $i < $NB FLOORS; $i++) { ?>
|[C.floor = <?=$i+$GROUND FLOOR?> & request[<?=$i?>]]

<?php } ?>));

4.1.7 When there are several requests, the software must (if neces-
sary) continue in the same direction than its last move.

Property P7 specifies that in any configuration the cage can moves in only one di-
rection. We compute the set of bad transitions that represent moves of the cage (i.e
labelled with up or down) and that are triggered from a configuration from which it is
also possible to move but in the opposite direction.

Specifications passed to arc is the following:

notP7 := any t & (label C.up & rsrc(src(label C.down)) |
label C.down & rsrc(src(label C.up))) ;

4.2 Liveness property

The last property P8 is different from previous ones because it specifies a liveness
condition. The model satifies P8 if there is a request for some floor i (via one of both
buttons for this floor) then, eventually, the cage will serve the i-th floor.

In order to check this property we leave Dicky’s logic to use CTL* module of arc.
This change is due to the use of symbolic data structure that not permit the use of
the well-known loop operator usually used to prove liveness properties. Unfortunately
this operator works only with explicit representation of state graphs.

The model satisfies P8 if for all floor i its initial state fulfils the CTL formula:
AG([request[i]] => AF([not request[i]]))

Recalls about CTL formulas:

• A state s satisfies AGφ if all states reachable from s satisfy φ.

• A state s satisfies AFφ if on all paths originating from s there exist a state that
satisfies φ.

To check P8 we have use chkctl command of arc. We could have used ctlspec to
integrate it with others properties but chkctl offers a better counter-example generator
specialized for CTL formulas.

4.3 Checking the model

If we consider only safety properties, our model does not satisfy properties P6 and P7.
arc script tells us:

11

Main1

C.request[0] = false, request[0] = false

F[3].requested = false, request[3] = false, requestUp = false, C.request[0] = true, request[0] = true

(C.B[0].push, C.B[0].push, C.B[0].push)

C.floor = 1, F[3].requested = true, request[3] = true, requestUp = true, requestDown = false

(F[3].B.push, F[3].B.push, F[3].B.push)

C.floor = 2, requestDown = true

(up, C.up)

Figure 4: Counter example for P6 property.

/∗
∗ Properties for node : Main1
∗ # state properties : 1
∗
∗ any s = 1792
∗
∗ # trans properties : 1
∗
∗ any t = 19032
∗/

TEST(initial,1) [PASSED]
TEST(notP1,0) [PASSED]
TEST(notP2,0) [PASSED]
TEST(notP3,0) [PASSED]
TEST(notP4,0) [PASSED]
TEST(notP5,0) [PASSED]
TEST(notP6,0) [FAILED] actual size = 1026
TEST(notP7,0) [FAILED] actual size = 720

4.3.1 Fixing P6: When the lift moves, it must stop where there is a
request.

In order to fix P6 we request arc to generate a counter-example to a configuration
that is the source of a faulty transition i.e. that moves the cage out of floor i while
there is actually a request for i. Commands passed to arc are the following:

traceP6 := trace(initial,any t,src(notP6));
ceP6 := reach(src(traceP6),traceP6 |notP6);
dot(ceP6, (traceP6 |notP6)) > ’lift−$NODENAME−P6.dot’;

The counter-example generated by arc is depicted on figure 4. On the figure one
can see that the cage moves instead of opening of the door at the current floor. Actually
moves of the cage and opening of of the door may occur in same configuration. To fix
the problem we have to forbid moves if the door can be open (i.e. if there is a request
for the current floor).

The fix consists simply in the specification of priorities between events

12

// add priorities to fix P6
event {down, up} < open[NB FLOORS];

After applying this patch, arc tells us that the new model satisfies P6 but not yet
P7:

/∗
∗ Properties for node : Main2
∗ # state properties : 1
∗
∗ any s = 1792
∗
∗ # trans properties : 1
∗
∗ any t = 18006
∗/

TEST(initial,1) [PASSED]
TEST(notP1,0) [PASSED]
TEST(notP2,0) [PASSED]
TEST(notP3,0) [PASSED]
TEST(notP4,0) [PASSED]
TEST(notP5,0) [PASSED]
TEST(notP6,0) [PASSED]
TEST(notP7,0) [FAILED] actual size = 180

4.3.2 Fixing P7: When there are several requests, the software must
(if necessary) continue in the same direction than its last move.

As previous we request arc to generate a counter-example. We uses the following
commands to get rhe result depicted on figure 5.

traceP7 := trace(initial,any t,src(notP7));
ceP7 := reach(src(traceP7),traceP7 |notP7);
dot(ceP7, (traceP7 |notP7)) > ’lift−$NODENAME−P7.dot’;

Actually the lift has no mean to favor the current direction since it does not know
it. We modify the model in order to make the controller remember the direction of
the last move. To this aim we add a Boolean state variable climb use to store last
direction. Transitions labelled with up and down events are modified accordingly:

state climb : bool;
init climb := false;

trans
climb & requestUp |− up −> ;
˜climb & requestDown |− down −> ;
˜climb&˜requestDown&requestUp |− up −> climb:=true;
climb&˜requestUp&requestDown |− down −> climb:=false;

/∗
∗ Properties for node : Main3
∗ # state properties : 1
∗
∗ any s = 2688
∗
∗ # trans properties : 1
∗
∗ any t = 26874
∗/

TEST(initial,1) [PASSED]
TEST(notP1,0) [PASSED]
TEST(notP2,0) [PASSED]
TEST(notP3,0) [PASSED]

13

Main2

F[3].requested = false, request[3] = false, requestUp = false

C.floor = 1, F[3].requested = true, request[3] = true, requestUp = true

(F[3].B.push, F[3].B.push, F[3].B.push)

C.floor = 2, C.request[0] = false, request[0] = false, requestDown = false

(up, C.up)

C.floor = 2, C.request[0] = true, request[0] = true, requestDown = true

(C.B[0].push, C.B[0].push, C.B[0].push)

C.floor = 1, requestDown = false

(down, C.down)

C.floor = 3, requestUp = true

(up, C.up) (down, C.down)

C.floor = 4, requestUp = false

(up, C.up)

Figure 5: Counter example for P7 property.

14

Main3

F[0].requested = false, request[0] = false

F[0].requested = true, request[0] = true

(F[0].B.push, F[0].B.push, F[0].B.push)

(F[0].B.push, F[0].B.push, F[0].B.push)

Figure 6: Counter example for P8 property.

TEST(notP4,0) [PASSED]
TEST(notP5,0) [PASSED]
TEST(notP6,0) [PASSED]
TEST(notP7,0) [PASSED]

With this new fix, the model passes all safety properties. Unfortunately the liveness
property is not satisfied as shown by counter-example returned by the following arc

command:

chkctl −−to−dot=lift−Main3−P8.dot Main3 "AG([request[0]] => AF([not
request[0]])) <?php for ($i = 1; $i < $NB FLOORS; $i++) { ?>
and AG([request[<?=$i?>]] => AF([not request[<?=$i?>]])) <?php
} ?>"

4.3.3 Fixing P8: Each request must be honored a day.

The counter-example shown figure 6 is quite disappointing but it is really a counter-
example of formula specified section 4.2. Nothing in the model forbids a user to
continuously push on a button which has the consequence to maintain the system in
the same state. An other counter-example that is more realistic, could have been a
user that press the button, the doors open and then close and the user press the button
and so on. Even if these are annoying behaviours it is not necessary to forbid them.

Actually P8 is incomplete and should be: In a normal use, each request must be
honored a day. What is a normal use of a lift ? In a normal use a lift should always
be able to move, eventually; in others words, in any configuration the system should
be reach a configuration from which the cage moves. With this setting, we just have
to change specification to restrict P8 to paths describing normal uses of the lift. To
impose this constraint on P8 we write the following CTL* formula for each floor i:

A [(G F ([C.floor = i] and X [C.floor != i]))
=> G([request[i]] => F([not request[i]]))]

Recalls on CTL* formulas:

• a state s satisfies A[φ] if all paths originating in s satisfy φ

• a path p satisfies G φ, if all suffixes of p satisfy φ.

• a path p satisfies F φ, if there exists a suffix of p that satisfies φ.

• a path p = s.w satisfies X φ if the suffix w of p satisfies φ.

Patched P8 property is satisfied by our last model.

15

References

[1] François Laroussinie. Logique temporelle avec passé pour la spécification et la
vérification des systèmes réactifs. PhD thesis, Institut National Polytechnique de
Grenoble, novembre 1994.

16

	Informal specification of the lift
	Roadmap to the model
	The number of floors
	Users
	What kind of modelling to use ?

	The model
	Buttons
	Doors
	Floors
	The cage
	The whole system

	Analysis and results of the system
	Safety properties
	Liveness property
	Checking the model

