
AltaRica Examples

Winning the Nim game∗

A. Griffault, G. Point
LaBRI - CNRS - Université Bordeaux

April 22, 2024

Contents

Nim is a game with two players. Matches are dispatched on rows. Each turn
a player chooses a row and remove at least one match from the row. The game
terminates when no more matches can be taken. Depending of winning rule,
the player that takes last matches is either the winner of the loser.

In the sequel we show how to compute winning strategies. Such strategies
ensure a player to win the game. Beyond the entertainment of playing (and
winning) games, the computation of winning strategies plays important role in
the synthesis of controllers that guarantee safety requirements of the system.
These controllers apply a winning strategy against the environment of the sys-
tem. In this particular games, the winning condition is not on matches but to
respect critical requirements.

1 The model

The AltaRica model of this game is simple and can be easily generated using
PHP preprocessor according to some number of lines N . For N = 3, the model
is given on the listing below.

To simplify the model, all lines can contain up to 2 ∗N − 1 matches. Each
line declares for k = 1, . . . , 2 ∗ N − 1, an event take k whose semantics is the
removal of k matches from the line. These events decrement of k the state
variable n that stores the remaining number of matches.

∗This example is extracted from AltaRica Handbook.

1

The model consists essentially in the declaration of the N lines. The top-
level node main set the initial number of matches in each line. The first one
contains 1 match, the second 3, the third 5 and so on using an increment of 2.

1 const N = 3;
2 const MaxMatches = 2 ∗ N − 1;
3 domain Matches = [0,MaxMatches];
4
5 node Line
6 state n : Matches : public;
7 event take 1 : public;
8 trans
9 n >= 1 |− take 1 −> n := n − 1;

10 event take 2 : public;
11 trans
12 n >= 2 |− take 2 −> n := n − 2;
13 event take 3 : public;
14 trans
15 n >= 3 |− take 3 −> n := n − 3;
16 event take 4 : public;
17 trans
18 n >= 4 |− take 4 −> n := n − 4;
19 event take 5 : public;
20 trans
21 n >= 5 |− take 5 −> n := n − 5;
22 edon
23
24 node Nim
25 sub
26 L : Line[N];
27 init
28 L[0].n := 1, L[1].n := 3, L[2].n := 5;
29 edon

Listing 1: Model of the Nim game with 3 raws.

2 Validation

Even if we are confident in our description of the game, we request arc to
validate now properties of the model.

• There is only one initial state.

• There is only one sink configuration. We specify this set of configuration
in the same manner as deadlocks i.e., states that are node the origin of a
transition.

sink := any s − src(any t − self epsilon);

• The model has 2N×N ! configurations. It suffices to check if the cardinality
of any s corresponds.

• The length of the longest play is N2. The board of the game contains N2

matches and the longest play is the one when only one match is take at
each turn. To get this length with arc, we compute the trace from the
initial state to the sink configuration using only take 1 transitions. For
N = 3, the specification is:

2

take one := label L[0].take 1
or label L[1].take 1
or label L[2].take 1;

maxpath := trace (initial, take one, sink);

Results are those excepted. For instance, with N = 6 we obtain:

TEST(initial,1d) [PASSED]
TEST(sink,1d) [PASSED]
TEST(any s,46080d) [PASSED]
TEST(maxpath,36d) [PASSED]

3 Winning strategies

In this section we use arc to determine if there exist winning strategies for both
players of a Nim game. From now on, we assume the winner is the one that
takes last matches; thus the loser is the one that has to play from a sink state.
Applying the other rule is straightforward. Let call players A and B; we assume
that A plays in first.

In a finite game with two players, a position i.e., a configuration of the model,
is either winning or losing for the player that has to play from this position.
Informally, a position is winning if there exists a move to a losing position (for
the opponent). And, a position is losing if all possible moves lead into a winning
position. A winning strategy proposes to a player facing a (winnin) position the
set of possible moves that put the opponent in a losing configuration.

Definitions of winning and losing positions are mutually depend but, since
we play in a finite arena, we can “easily” formalize these sets of configurations
using fixpoint equations.

In the sequel we will use the following set of transitions that are actions of
players on lines:

move := any t − epsilon;

Let’s start with trivially known winning and losing positions. The rule says
that all sink states are losing position; we thus define the first set Lose that
contains all trivially losing positions.

Lose := sink;

Then, all positions that precede Lose are obviously winning configurations; let
call Win this new trivial set:

Win := any s & src (move & rtgt (Lose));

These constant sets being defined we define following sets using least-fixpoint
equations:

• Winning is the set of winning positions. A winning configuration is either
in Win or is the origin of a winning move:

Winning += Win or src (WinningMove);

3

• WinningMove is the set of transitions that are winning for the player that
triggers them. This means that targets of such transitions are losing po-
sitions:

WinningMove += move & rtgt (Losing);

• Losing is the set of losing positions. A losing configuration is either a sink
state in Lose set or all moves originating from these positions are losing
moves:

Losing += Lose or (src(LosingMove) − src (WinningMove));

• Finally, LosingMove is the set of transitions that make the player lose the
game by setting the opponent in a winning position:

LosingMove += move & rtgt (Winning);

Since arc does not support in acheck syntax the definition of fixpoints using
several equations (it is however possible using Mec 5 syntax), we substitute
definitions of WinningMove, Losing and LosingMove into Winning. We obtain
the following acheck definitions:

Winning += Win |
src (move & rtgt (Lose |

(src(move & rtgt (Winning)) −
src(move − rtgt (Winning)))));

LosingMove := move & rtgt (Winning);
Losing := Lose | (src (LosingMove) − src (move − LosingMove));
WinningMove := move & rtgt (Losing);

Now if we want to know if the first player will be the winner then we just
have to check the emptyness of:

AWinner := initial & Winning;

Table ?? gathers computations made with arc for first values of N . When N
equals 4 or 8, player A should loses the play if its opponent follows its winning
strategy. These results just confirm what theory predicts. Actually it is known
that a position is losing if the exclusive-or sum of remaining matches is 0. Table
?? gives this sum for each initial position i.e. the position from which A should
start the play. For N = 4 and N = 8 this sum is 0.

Up to now we have show that first player has a strategy to win Nim game
but we do not exhibit this strategy. arc permits to get it as a graph. We have
to compute the subgraph of whole semantics that contains only winning plays.
This subgraph is obtained from the semantics by removing moves of player A
that do not belong to the strategy. Let define this set as:

BadMove := move & (rsrc (Winning) − WinningMove);

The set of configurations that belong to the strategy are accessible from the
initial state without using wrong moves of A (any move of B should be losing):

plays := reach (initial, move−BadMove);

4

N any s M ⊕ AWinner
3 48 9 111 1
4 384 16 000 0
5 3840 25 1001 1
6 46080 36 0010 1
7 645120 49 1111 1
8 10321920 64 0000 0
9 185794560 81 10001 1

Table 1: Results computed with arc for 3 to 9 lines of matches. Column M
gives the total number of matches. Column ⊕ gives the exclusive-or of number
of matches in the lines. Column AWinnner contains the cardinality of the
property AWinner.

Now the expected subgraph is obtained using the following dot command.
The result is displayed on figure ?? (page ??).

Graphical description of the winning strategy makes sense only for small
graphs. Another way to proceed is to request arc to generate a controller that
embeds the strategy. Controllers is a basic feature of AltaRica language. Actu-
ally each intermediate node of the hierarchy is a controller that can constrain
behaviours of its sub-nodes. Usually these constraints are simply assertions to
wire flows or synchronization vector to enforce synchronism of events. These ba-
sic constraints can be coupled with complex behaviours described by transitions
of the intermediate node.

In the current model of the game, the top-level node has no actual be-
haviours; the main node just declares its sub-nodes. We request arc to generate
behaviours that implements the strategy for player A. To generate a usefull
controller, this latter must be able to control and to take decisions according to
current position of the game; this is why state variable and events of lines have
been set public. This attribute makes state variables accessible to the parent
node (but he could use a flow variable) and it creates implicitly a copy of events
in the controller.

To generate the controller we use the following arc command (for N = 3).
The two first parameters are behaviours allowed by the controller; the third
parameter is the name of the generated node and the last one requests arc to
simplify guard of transitions (using BDDs).

project (plays, move − BadMove, ’$NODENAME3 R1’, true)

The controller generated for N = 3 is given below. In produced node, arc
has made synchronization of public events explicit.

/∗
∗ This node is the result of the projection of the node ’Nim’
∗ on its subnode ’Nim’.
∗/

node Nim3 R1
event

5

’L[0].take 1’ : public;
’L[0].take 2’ : public;
’L[0].take 3’ : public;
’L[0].take 4’ : public;
’L[0].take 5’ : public;
’L[1].take 1’ : public;
’L[1].take 2’ : public;
’L[1].take 3’ : public;
’L[1].take 4’ : public;
’L[1].take 5’ : public;
’L[2].take 1’ : public;
’L[2].take 2’ : public;
’L[2].take 3’ : public;
’L[2].take 4’ : public;
’L[2].take 5’ : public;

sub
L : Line[3];

sync
<’L[2].take 5’, L[2].take 5>;
<’L[2].take 4’, L[2].take 4>;
<’L[2].take 3’, L[2].take 3>;
<’L[2].take 2’, L[2].take 2>;
<’L[2].take 1’, L[2].take 1>;
<’L[1].take 5’, L[1].take 5>;
<’L[1].take 4’, L[1].take 4>;
<’L[1].take 3’, L[1].take 3>;
<’L[1].take 2’, L[1].take 2>;
<’L[1].take 1’, L[1].take 1>;
<’L[0].take 5’, L[0].take 5>;
<’L[0].take 4’, L[0].take 4>;
<’L[0].take 3’, L[0].take 3>;
<’L[0].take 2’, L[0].take 2>;
<’L[0].take 1’, L[0].take 1>;
init
L[0].n := 1, L[1].n := 3, L[2].n := 5;

/∗ Existential transitions ∗/
trans
false |− ’L[2].take 5’ −> ;
false |− ’L[2].take 4’ −> ;
L[2].n=5 and L[1].n=3 and L[0].n=1 |− ’L[2].take 3’ −> ;
(L[2].n=2 and L[1].n=0 or L[2].n=2 and L[1].n=2) and L[0].n=0 or

(L[2].n=2 and L[1].n=1 or L[2].n=2 and L[1].n=3) and L[0].n=1
|− ’L[2].take 2’ −> ;

(L[2].n=1 and L[1].n=0 or 1<=L[2].n and L[2].n<=2 and L[1].n=1 or
L[2].n=2 and L[1].n=2) and L[0].n=0 or (1<=L[2].n and
L[2].n<=2 and L[1].n=0 or L[2].n=2 and L[1].n=3) and L[0].n=1
|− ’L[2].take 1’ −> ;

false |− ’L[1].take 5’ −> ;
false |− ’L[1].take 4’ −> ;
1<=L[2].n and L[2].n<=2 and L[1].n=3 and L[0].n=1 |−

’L[1].take 3’ −> ;
(L[2].n=0 or L[2].n=2) and L[1].n=2 and L[0].n=0 or (L[2].n=0 or

L[2].n=2) and L[1].n=3 and L[0].n=1 |− ’L[1].take 2’ −> ;
(0<=L[2].n and L[2].n<=1 and L[1].n=1 or 1<=L[2].n and L[2].n<=2

and L[1].n=2 or L[2].n=2 and L[1].n=3) and L[0].n=0 or
(L[2].n=0 and L[1].n=1 or L[2].n=2 and L[1].n=3) and L[0].n=1
|− ’L[1].take 1’ −> ;

false |− ’L[0].take 5’ −> ;
false |− ’L[0].take 4’ −> ;
false |− ’L[0].take 3’ −> ;
false |− ’L[0].take 2’ −> ;
(0<=L[2].n and L[2].n<=1 and L[1].n=0 or L[2].n=0 and L[1].n=1 or

L[2].n=2 and 2<=L[1].n and L[1].n<=3) and L[0].n=1 |−
’L[0].take 1’ −> ;

edon

6

N
im

L
[2

].
n

 =
 5

L
[0

].
n

 =
 1

, L
[1

].
n

 =
 3

, L
[2

].
n

 =
 2

(L
[2

].
ta

k
e_

3
, L

[2
].

ta
k

e_
3

)

L
[0

].
n

 =
 0

, L
[1

].
n

 =
 3

(L
[0

].
ta

k
e_

1
, L

[0
].

ta
k

e_
1

)

L
[0

].
n

 =
 1

, L
[1

].
n

 =
 2

(L
[1

].
ta

k
e_

1
, L

[1
].

ta
k

e_
1

)

L
[1

].
n

 =
 1

, L
[2

].
n

 =
 2

(L
[1

].
ta

k
e_

2
, L

[1
].

ta
k

e_
2

)

L
[1

].
n

 =
 0

, L
[2

].
n

 =
 2

(L
[1

].
ta

k
e_

3
, L

[1
].

ta
k

e_
3

)

L
[1

].
n

 =
 3

, L
[2

].
n

 =
 1

(L
[2

].
ta

k
e_

1
, L

[2
].

ta
k

e_
1

)

L
[1

].
n

 =
 3

, L
[2

].
n

 =
 0

(L
[2

].
ta

k
e_

2
, L

[2
].

ta
k

e_
2

)

L
[0

].
n

 =
 0

, L
[1

].
n

 =
 2

, L
[2

].
n

 =
 2

(L
[1

].
ta

k
e_

1
, L

[1
].

ta
k

e_
1

)
(L

[0
].

ta
k

e_
1

, L
[0

].
ta

k
e_

1
)

L
[0

].
n

 =
 1

, L
[1

].
n

 =
 1

, L
[2

].
n

 =
 0

(L
[2

].
ta

k
e_

2
, L

[2
].

ta
k

e_
2

)

L
[0

].
n

 =
 1

, L
[1

].
n

 =
 0

, L
[2

].
n

 =
 1

(L
[2

].
ta

k
e_

1
, L

[2
].

ta
k

e_
1

)
(L

[1
].

ta
k

e_
3

, L
[1

].
ta

k
e_

3
)

(L
[1

].
ta

k
e_

2
, L

[1
].

ta
k

e_
2

)

L
[1

].
n

 =
 1

, L
[2

].
n

 =
 2

(L
[1

].
ta

k
e_

1
, L

[1
].

ta
k

e_
1

)

L
[1

].
n

 =
 0

, L
[2

].
n

 =
 2

(L
[1

].
ta

k
e_

2
, L

[1
].

ta
k

e_
2

)

L
[1

].
n

 =
 2

, L
[2

].
n

 =
 1

(L
[2

].
ta

k
e_

1
, L

[2
].

ta
k

e_
1

)

L
[1

].
n

 =
 2

, L
[2

].
n

 =
 0

(L
[2

].
ta

k
e_

2
, L

[2
].

ta
k

e_
2

)

L
[1

].
n

 =
 1

, L
[2

].
n

 =
 1

(L
[2

].
ta

k
e_

1
, L

[2
].

ta
k

e_
1

)

L
[0

].
n

 =
 0

, L
[1

].
n

 =
 0

, L
[2

].
n

 =
 0

(L
[2

].
ta

k
e_

2
, L

[2
].

ta
k

e_
2

)

(L
[1

].
ta

k
e_

1
, L

[1
].

ta
k

e_
1

)

(L
[1

].
ta

k
e_

2
, L

[1
].

ta
k

e_
2

)
L

[0
].

n
 =

 0
, L

[1
].

n
 =

 0
, L

[2
].

n
 =

 1

(L
[1

].
ta

k
e_

1
, L

[1
].

ta
k

e_
1

)

L
[0

].
n

 =
 0

, L
[1

].
n

 =
 1

, L
[2

].
n

 =
 0

(L
[2

].
ta

k
e_

1
, L

[2
].

ta
k

e_
1

)

(L
[2

].
ta

k
e_

1
, L

[2
].

ta
k

e_
1

)
(L

[1
].

ta
k

e_
1

, L
[1

].
ta

k
e_

1
)

(L
[0

].
ta

k
e_

1
, L

[0
].

ta
k

e_
1

)

L
[0

].
n

 =
 1

, L
[1

].
n

 =
 0

, L
[2

].
n

 =
 0

(L
[2

].
ta

k
e_

1
, L

[2
].

ta
k

e_
1

)

(L
[0

].
ta

k
e_

1
, L

[0
].

ta
k

e_
1

)

(L
[0

].
ta

k
e_

1
, L

[0
].

ta
k

e_
1

)

(L
[1

].
ta

k
e_

1
, L

[1
].

ta
k

e_
1

)

Figure 1: Winning strategy for player A for Nim game with 3 lines

7

