AltaRica Examples

Proof of Peterson’s algorithm for
mutual exclusion

A. Griffault, G. Point
LaBRI - CNRS - Université Bordeaux

November 25, 2024

Contents

1 The critical section problem 2

2 Peterson’s algorithm 2

3 The model 3
3.1 What kind of modelling ? 3
3.2 Shared variables 3
3.3 Model of a process 3
3.4 Putting all processes together 5

4 Checking the model 6
4.1 Validation e 6
4.2 Mutual exclusion 7
4.3 Liveness 7
4.4 Freedom from starvation 8
45 Results. 8

Mutual exclusion (or critical section access) is a classical problem in the
domain of distributed algorithms. This problem is encountered in the domain
of operating systems where several processes compete to get resources that are
not shareable. It is also a common issue in concurrent programming.

*This example is extracted from AltaRica Handbook.

1 The critical section problem

We consider N processes whose only allowed instructions are read or write of
a memory word (i.e. these actions can not be interrupted by the processor)
execute the following program:

1 begin

2 while true do

3 begin

4 // Enter critical section
5 execute critical code

6 // Leave critical section
7 execute non critical code
8 end

9 end

The problem to solve is to give access to critical section (CS), line 5, to
all processes. A correct solution must satisfy at least the first two following
requirements. The third one is more difficult to obtain.

Mutual exclusion One and only one process execute the CS;

Liveness If two or more processes try to enter their CS then one of them
eventually enters its CS.

Freedom from starvation If a process is trying to enter its critical section,
it will eventually succeed.

2 Peterson’s algorithm

A well-known solution to mutual exclusion problem has been proposed by Gary
Peterson[2]. Intuitively, a level between 0 and N — 1, is associated to each
process. To obtain the access to the CS, processes have reach the highest level.

Let N be the number of running processes. The algorithm uses two arrays
of integers:

Q[1..N] indicates the current level of each process. Elements of Q belong to
the range [0..N —1].

Turn[1..N — 1] stores the last process that has reach a level. Elements of
Turn belong to the range [1..N].

const N

shared variables
Q : array([l..N] of [0..N—-1];
turn : arrayl[l..N—=1] of [1l..N];

In this algorithm, processes climb a ladder with N — 1 steps. When several
processes try to pass the same step, at least one of them do not move. The
algorithm for the i-th process is the following:

begin
while true do
begin
for j from 1 to N—1 do
begin
oli] = J;
Turn[j] = 1i;

wait until ((for all k # i, (Q[k] < J)) ou (Turn[jl#1i))
end
execute critical code
o[i] := 0;
execute non critical code
end
end

3 The model
3.1 What kind of modelling ?

As indicated by the title of this exercice, we have to prove the correctness of an
algorithm. Properties proved on the model will be satisfied by the algorithm
only if we have reproduced accurately the algorithm in the model.

Thus, the description is very close from the algorithm and one of the major
issue is to determine are store shared variables in the AltaRica hierarchy.

3.2 Shared variables

The algorithm uses two kind of shared variables:

read/write access The variable Q[:] which indicates current level of process i
is modified only by the i-th process; other processes just read the variable.

write/write access The variable Turn[j] which indicates the number of the
last process that reached level j is modified by all processes.

QL[] can be handled using a state variable of the i-th process. The value of
this variable is then made available to other processes with a flow variable.

The variable Turn[j] can not be handled in the same manner as a state
variable of the i-th process because other processes could not modify it. This
variable is thus a state variable of the hierarchical level that embeds all processes
and its changes will be described using synchronizations.

In the sequel variables will take their values in following domains:

const N = <?= $N ?>;

domain ProcessID = [1, NJ];

domain ProcessLevel = [0, N-1];

Note the use of PHP code. In the sequel of this example, arc requests PHP
preprocessing for each loaded file. php is invoked using, for instance, following
settings (here we have set the number of processes to 4):

set arc.shell.preprocessor.default.command \
"php -d short_open_tag=0n -r ’$NB_PROCESSES = 4; include ($argv[1]); 7>’"

3.3 Model of a process

AltaRica tools, among which arc, does not support parameterized models. However,
using PHP preprocessor, one can describe in a generic way Peterson’algorithm for any
number of processes N > 1.

To describe the algorithm by means of AltaRica transitions we identify some of its
program points. In the model we will use the following domain:

domain ProgramCounter = { A, B, C, D };

Intuitively, these program points are located in the algorithm as follows:

1 begin

2 while true do

3 begin

4 for j from 1 to N—-1 do

5 begin

6 // program counter = A
7 oril = J;

8 // program counter = B
9 Turn[j] = 1i;

10 // program counter = C
11 wait until ((for all k # i, (Q[k] < J)) ou (Turn[jl#1i))
12 end

13 // program counter = D

14 execute critical code

15 Qo[il] := 0;

16 execute non critical code
17 end

18 end

The AltaRica model of the algorithm can be generated “easily” for any integer N >
1 using PHP preprocessing. Since PHP code is neither readable nor very interesting
we present in next sections the model for N = 3.

The node for Processes is depicted on listing 1. It starts with the declaration of
parameters, variables and events.

The parameter ident is used by the top-level node to specify to each process its
identifier. This parameter is compiled as a constant value and add no cost to the
model.

Then we find shared variables of the algorithm Q and Turn. As we mention in
above section each process is allowed to modified its associated level in Q and only
this variable. The level of the process is represented by the state variable j. Assertion
at line 10 makes current level readable by other processes by enforcing the quality of
variables Q[i] and j. Turn array is not constrained by Process nodes. We use a private
variable, wait, to store the truth value of the waiting condition of the algorithm;
this truth value is defined by assertion at line 12. Finally variable pc stores current
program counter of the algorithm.

Events describe following actions:

e reqCS models the fact that the process wants to access its CS; this event corre-
sponds to the assignment of Q[].

e setTurn[/] indicates that this process is the last one having reached level [. Since
Turn variable can not be modified by Processes, setTurn[/] is synchronized by
upper node.

e enterCS labels transitions that enter the critical section at program counter D.

e run models the execution of critical section and the loop to the entrypoint of
the algorithm.

The declaration of events is followed by transitions between program points. Note
transitions labelled by setTurn[l] that have to be synchronized with transitions of
the main node that assigns Turn variable.

1 node Process

2 param ident : ProcessID;

3 flow QO : ProcessLevell[N];
4 Turn : ProcessID[N-1];
5 wait : bool : private;
6 state pc : ProgramCounter;

7 j : ProcessLevel;

8 init pc := A4, j := 0;

9 assert

0

—

// export current level

11 Qlident—1] = j;

12 // waiting condition

13 wait = not ((((1 != ident) => Q[0] < 7)

14 and ((2 /= ident) => Q[1] < J)

15 and ((3 /= ident) => Q[2] < 7))

16 or (j =1 & Turn[0] != ident)

17 or (j =2 & Turn[l] != ident));

18

19 event reqCS, setTurn[N-1], enterCS, run;

20 trans

21 pc = A |- reqCS = pc := B, j := j + 1;

22 pc = Band j =1 |- setTurn[0] —> pc := C;

23 pc = Band j =2 |- setTurn[l] —> pc := C;

24 pc = C and j < 2 and not wait |— run —> pc := A;
25 pc = C and j = 2 and not wait |— enterCS —> pc := D;
26 pc =D |— run = pc := 4, j :=0;

27 edon

Listing 1: Model of a process for N = 3

3.4 Putting all processes together

Listing 2 is the model of environment of processes. It mainly describes interactions
between the three processes.

After the declaration of processes’ P;s, the Main node assigns (line 4) identifiers
to Process nodes by defined the value of ident parameters. The shared variables
are then declared. As mentionned above, only Turn contains state variables while Q
gathers shared flow variables.

Assertions describe the sharing of variables Q and Turn.

The assignments of Turn variables is then described. First the model, line 22,
enumerates events that represents the assignment of each cell: an event turniToi
models the assigment Turn[l] := i. Corresponding transitions follow.

Finally line 34assignments of Turn variables are synchronized according to the
event setTurn[:] of each process.

1 node Main

2 sub

3 P1, P2, P3 : Process;

4 param_set // assigning identifiers to processes
5 Pl.ident := 1,

6 P2.ident := 2,

7 P3.ident := 3;

8 flow

9 Q : ProcessLevel[N];

10 state

11 Turn : ProcessID[N-1];

12 init

13 Turn([0] =1,

14 Turn([1l] =1;

15 assert

16 P1.Turn = Turn;

17 P1.Q0 = Q;

18 P2.Turn = Turn;

19 P2.Q = Q;

20 P3.Turn = Turn;

21 P3.0 = Q;

22 event // Assignments of Turn variables

23 turnlTol, turnlTol, turnlToZ2, turnlTo3;
24 turn2Tol, turn2Tol, turn2ToZ2, turn2To3;
25 trans

26 true \— turnlTol —> Turn[0] := 1;

27 true \— turnlTo2 —> Turn([0] = 2;

28 true |— turnlTo3 —> Turn[0] := 3;

1Here we do not use an array of Process nodes to permit be able to assign distinct values
to ident parameters.

30 true |— turn2Tol —> Turn[l] := 1;
31 true |— turn2To2 —> Turn[l] := 2;
32 true |— turn2To3 —> Turn[l] := 3;
33

34 sync //Synchronization of assignments of Turn variables
35 <turnlTol,Pl.setTurn[0]>;

36 <turnlTo2,P2.setTurn[0]>;

37 <turnlTo3,P3.setTurn[0]>;

38

39 <turn2Tol,Pl.setTurn[1l]1>;

40 <turn2ToZ2,P2.setTurn[l]>;

41 <turn2To3,P3.setTurn[1]>;

42

43 edon

Listing 2: Model of environment of processes for N = 3

4 Checking the model
4.1 Validation

Before checking that our model possess expected properties we make some validation
tests. First of all we use the validate command of arc to verify that all elements
of the models are actually used when computing its semantics. For N = 2, the tools
produces the results below.

arc creates, for each parameter, a state variable that stores the value of the pa-
rameter. These state variables are never modified. This explains the warnings related
to parameters. Note that for N = 2 our PHP code produces also unused transitions
that are mentionned by the command validate.

basic properties checking for node ’'Main’

there is 20 configurations.
usage of variables

state variable 'P2.ident’ is never used (asserts and trans).
state variable 'P2.ident’ 1is not assigned by a transition.
state variable 'Pl.ident’ is never used (asserts and trans).
state variable 'Pl.ident’ 1is not assigned by a transition.

uniqueness of initial configuration
The system has only one initial configuration

coverage of domains / configurations
Domains of variables are covered by the set of configurations.

coverage of domains / reachables
State variable ’'P2.ident’ does not cover its domain.
Missing values (restricted to configurations) verify:
(P2.ident = 1)
State variable
Missing values
(P1.ident = 2)

"Pl.ident’ does not cover its domain.
(restricted to configurations) verify:

usage of macro—transitions

not P2.wait and ((P2.7 < 1)) and ((P2.pc = C)) |f P2.run —> P2.pc
:= A 1s never triggered.

not Pl.wait and ((Pl.pc = C)) and ((P1.j < 1)) |- Pl.run —> Pl.pc
:= A 1s never triggered.

After this first checking, we compute some elementary properties of the algorithm:

Absence of deadlock We check that there is no sink configuration. Such configu-
ration has no output transition except the one labelled by e event. We have to
check that the following set is empty:

deadlock := any-s — src (any-t — self_epsilon);

Resetability We check that the initial state is reachable from any other configuration.
In other words, any configuration is co-accessible from the initial one. We have
to check that the following set is empty:

nonreset := any.s — coreach (initial, any-t);

In order to make formula clearer now and in the sequel, we define the following
sets of configuration for each process identifier i:

P;ReqCS := any-s and tgt (label P;.reqCS);
P;InCS := any.s and tgt (label P;.enterCS);

P;ReqCS is the set of configuration frtom which process P; has requested to enter
its CS. P;InCS is the set of configuration where process P; is in its critical section.

Then sets, ReqCS and InCS, defined below are the sets where, respectively, some
process has requested access to its CS and some process is in its CS.

ReqCS := P1ReqgCS or ... or PNReqCsS;
InCS := PNInCS or ... or PnInCS;

4.2 Mutual exclusion

As usual, we check properties by verifying the emptyness of the set of configurations
that do not satisfy the property. The mutual exclusion property is an invariant that
must be fulfilled by all configurations. A configuration does not satisfy the invariant
if at least two processes are in their respective CS. The property is thus falsified if for
some i # j the intersection of PiInCS and PjInCS is not empty.
We request arc to compute the union of all such intersections. For instance, for
N = 4 we have specified:
mutex :=
(P1InCS and (P2InCS or P3InCS or P4InCS)) or
(P2InCS and (P3InCS or P4InCS)) or

(P3InCS and (P4InCS));
test (mutex, 0) >> "petersond.res";

4.3 Liveness

To prove liveness property we enumerate set of processes that try to access their critical
section and forbid others to have a concurrent access. For each set of concurrent
processes we compute the set of configurations such that:

e only these processes have requested access to their CS; others stay at program
point A;

e there exists a path that infinitely avoid entering in CS by one of these processes.

The specification of this property in arc uses the function unav(T, S); a mnemonic
for unavoidable. This builtin function computes the set of configurations U from which
all paths that follow transitions on 7" eventually pass by a configuration in S. In other
words, configurations in U can not avoid the set S when using only transitions in 7T'.

Let I C {1,...,N} be identifiers of processes. The set of configurations where
only these processes try to access their CS is:

[PiReqcs N () [Pipc = A APi.j = 0]
iel igl

N| S T | deadlock nonreset mutex liveness starvation
2 20 34 0 0 0 0 0

3 417 945 0 0 0 0 186

4 9272 25792 0 0 0 0 5620

5 | 223105 741065 0 0 0 0 157175

Table 1: Results computed by arc for 2 to 5 processes.

Liveness property is falsified if from this set of configurations the set U;c;PiInCS
is avoided by at least one path along which processes that are not identified by I do
not try to enter their CS.

For N = 3 the request sent to arc is the following;:

liveness :=
((P1ReqCS and P2ReqCS and [P3.pc = A & P3.37 = 0])
— unav (any-t—(self_epsilon or label P3.reqCSs),
P1InCS or P2InCS)) or
((P1ReqCS and [P2.pc = A & P2.37 = 0] and P3ReqgCS)
— unav (any-t—(self_epsilon or label P2.reqCSs),
P1InCS or P3InCS)) or
(([Pl.pc = A & P1.j = 0] and P2ReqgCS and P3ReqgCS)
— unav (any-t—(self_epsilon),
P1InCS or P2InCS or P3InCS)) or
((P1ReqCS and P2ReqCS and P3ReqCS)
— unav (any-t—(self_epsilon),
P1InCS or P2InCS or P3InCS));
test (liveness, 0) >> "peterson3.res";

4.4 Freedom from starvation

Starvation occurs if there exists a process that tries to enter in CS but is always
bypassed by others. To check if a process, say Pi, is starved we have to verify that
from each configuration from which Pi has started to access CS all paths pass by a
configuration where Pi has entered its CS.

Yet we use unav operation to filter from PiReqCS configurations that can avoid
PiReqCS. Obviously we disallow self-loops on € event. For each process Pi the following
set should be empty:

PiReqCS - unav (any_t-self _epsilon, PiInCS)

To check freedom from starvation when, for instance, N = 3, arc check emptyness

following set:

starvation :=
(P1ReqCS — unav (any-t—(self_epsilon), P1InCS)) or
(P2ReqCS — unav (any.t—(self_epsilon), P2InCS)) or
(P3ReqCS — unav (any-t—(self_epsilon), P3InCS))

7

4.5 Results

We have checked properties of Peterson’s algorithm from 2 to 5processes. Following
table summarizes results. Columns S and 7T give, respectively, the number of con-
figurations and transitions of the model. Next columns give the number of states of
computed properties presented in above sections.

Last column seems indicate that for N > 3 starvation exists. If we request arc to
generate a counter-example? that shows existence of a starved process for N = 3, we
obtain graph on figure 1 page 10.

2Here we have use CTL* engine to produce this counter-example.

The counter example show that processes P2 and P3 alternatively enter their re-
spective CS. The infinite loop depicted on figure 1 shows that P1 can not trigger
any setTurn transition because as soon as P2 (or P3) terminates its critical section it
requests a new access to its CS.

Actually it is known that Peterson’s algorithm does not guaranteed bounded
waiting[!] which means that without fairness constraint some process, like P1 in our ex-
ample, can be postponed an unbounded amount of time until it enters its CS. However
if we constraint processes to not try to reenter CS just after leaving it then freedom
from starvation is obtained.

In order to apply above constraint we define the set ReqAfterRun of transitions
labelled by some Pi.reqCS that triggered just after a transition Pi.run i.e. that leaves
the CS. For N = 3 this set is specified as follows:

RegAfterRun :=
(label P1.reqCS & rsrc(tgt (label Pl.run))) or
(label P2.reqCS & rsrc(tgt (label P2.run))) or

(label P3.reqCS & rsrc(tgt (label P3.run)));

Then we forbid these transitions on paths that should not avoid each Pi to enter
its CS:

fixedstarvation :=
(P1IRegCS — unav (any,t—(selfpepsilon|RqufterRun), P1InCS)) or
(P2ReqCS — unav (any,t—(self;epsilon|RqufterRun), P2InCS)) or
(P3ReqgCS — unav (any,tf(selfLepsilon|RqufterRun), P3InCS));
test (fixedstarvation, 0) >> "peterson3.res";

Under this constraint results are what was expected; for N = 3, arc displays:

TEST (deadlock, 0) [PASSED]

TEST (nonreset, 0) [PASSED]

TEST (mutex, 0) [PASSED]

TEST(liveness,0) [PASSED]

TEST (starvation, Q) [FAILED] actual size = 186
(

TEST (fixedstarvation, Q) [PASSED]

References

[1] K. Alagarsamy. Some myths about famous mutual exclusion algorithms. SIGACT
News, 34(3):94-103, September 2003.

[2] G. L. Peterson. Myths about the mutual exclusion problem. Information Processing
Letters, 12(3):115-116, 1981.

(turn1To3, P3.setTurn[0]),

(turn1Tol,P1.setTurn[0]

Main

Figure 1: Counter-example of freedom from starvation

10

	The critical section problem
	Peterson's algorithm
	The model
	What kind of modelling ?
	Shared variables
	Model of a process
	Putting all processes together

	Checking the model
	Validation
	Mutual exclusion
	Liveness
	Freedom from starvation
	Results

