
AltaRica
Constraint automata as a description language

G. Point
IXI/LaBRI - 110, rue Achard 33300 Bordeaux - FRANCE

A. Rauzy
LaBRI - 351, cours de Libération 33405 Talence - FRANCE

ABSTRACT : This paper presents an overview of the AltaRica language. This language is the
core of the AltaRica workbench, which is dedicated to reliability and dependability analyses of
critical systems. The AltaRica language is both formal, to ensure mathematical soundness, and
graphical, to be user-friendly. It stands at a high level andis designed to be compiled into lower
level formalisms such as Boolean formulae, Petri nets or finite state automata. It can be seen as
a convenient mean to describe constraint automata.
KEYWORDS : High level description languages, reliability workbenches.

1. Introduction

Reliability analyses of critical systems are, in general, twofold. First, they aim to
determine, as exhaustively as possible, the variousscenariiof failure of the system
under study. Second, they try to quantify thesescenarii, i.e. to assess the probability
that the system fails during a given mission time. Several formalisms are used as sup-
port languages of such analyses, e.g. Fault Trees, Petri nets or Markov graphs (see
[AND 93] for a review). Each of them has distinguishing features that make it suitable
to capture some (but not all) of the aspects of the behavior ofthe system. They share
however two important characteristics. First, they are both formal and graphical. This
ensures their mathematical soundness on the one hand and theuser-friendship of the
tools implementing them on the other hand. Second, they stand at a rather low level.
This makes it possible to design simple and efficient assessment algorithms. This has
also the drawback to make it difficult to design and to maintain the models, because
of their inherent distance to the system under study.

The AltaRica workbench is designed to tackle this latter difficulty. It is based on
the high level AltaRica language. The AltaRica language is also both formal and gra-
phical. Moreover, it is designed to be compiled into the mentioned low level for-
malisms. The idea to combine graphical and textual descriptions is indeed very na-

node main
 sub ...
edon

Models

Aralia
Réséda
Hévéa

Moca-RP
Arabica

MEC
Toupie

Tools

(Constraint Automata)

Systems AltaRica Language

Figure 1. The AltaRica workbench at a glance

tural. It is applied in many areas, including the design of communication protocols
(e.g. SDL [TUR 93]), the design of programmable logic controllers (e.g. IEC 1131-
3 languages[BON 97]) or the design of reactive systems (e.g.Statecharts [HAR 87],
Argos [MAR 91]). However, none of these formalisms is well suited for reliability
analyses for they are designed to specify programs and not todescribe behaviors of
physical systems in presence of diseases. Several tools were designed for this lat-
ter purpose (e.g. FIABEX [HUT 94], FIGARO[BOU 93]). The originality of AltaRica
(w.r.t. these tools) is twofold. First, the language has well-defined semantics. Second,
the workbench is designed to embed tools stemmed from both the reliability engi-
neering framework (Aralia [DUT 97], Moca-RP [SIG 95]) and the formal methods
framework (MEC [ARN 94b], Toupie [COR 97]), as illustrated Fig. 1.

The AltaRica semantics is defined in terms of constraint automata [BRL 94].
Constraint automata are usual state automata, except that states and transitions are
kept implicit, i.e. are described by means of constraints over variables. One of they key
advantages of this presentation is that it makes it possibleto describe long distance in-
teractions (through shared variables) without loosing thelocality of the descriptions.
Constraint automata generalize both finite state machine and Petri nets. Compiling
an AltaRica description into a Petri net or a finite state automaton is therefore rather
easy. The compilation into Fault Trees is also possible, although this process trans-
forms sequences of events into sets of events (loosing in that way the notion of event
schedule).

This paper aims to provide the reader with an overview of AltaRica. We put the
emphasis on the language for it plays a central role in the whole project. The section 2
is devoted to the main features of the language. We present constraint automata that are
its mathematical basis. An illustrative example is presented section 3. Finally, section 4
discuss the problems raised by the compilation of AltaRica descriptions into Boolean
formulae.

2. The AltaRica language

2.1. Constraint Automata

The mathematical foundation of the AltaRica language is thenotion of constraint
automata [BRL 94, COR 97]. Constraint automata are like finite state automata except
that states are described implicitly by means of constraints over variables.

Intuitively, a constraint automaton is a set of transitionsof the formG(V) e�! V = �(V)
whereV is a set of variables that take their values into a finite or infinite domainD,G(V) is a constraint (or a guard, or a Boolean condition) over these variables,e is an
event name and finallyV = �(V) is an assignment of variables ofV . A state of the
automaton is just a valuation (with elements ofD) of the variables ofV . A transitionG(V) e�! V = �(V) means that if the automaton is in a state that verifiesG(V) and
if the evente occurs, then it goes into the new state�(V).

The name “guarded automata” could be used instead of “constraint automata”.
However, the term constraint refers here to algorithms usedto handle set of states.
These algorithms are actually inspired from constraint solving techniques (see for
instance [HEN 89]).

As we shall see, several constraint automata can be synchronized in order to give
a larger constraint automata. The synchronization mechanism is derived from the
Arnold-Nivat model [ARN 82, ARN 94a].

AltaRica is basically a language to describe constraint automata. The language is
hierarchical : each component describes a constraint automaton and components are
combined together through the synchronization process. For the sake of the conve-
nience, several features are added to the basic model :

– The description is hierarchical, as we just mentioned, andevents may be syn-
chronized.

– Priorities may be set among events.
– Variables are separated into two categories, namely states variables and flow

variables. The formers are local to components. The latter’s, that depend func-
tionally on the formers, describe the interfaces of components.

– Some constraints may be set on the states that constrain theautomaton to stay
into a subset ofDjV j.

Formally, aconstraint automatonis a tupleA = hD;S; F;E; T;A; Ii where :
– D is a finite or infinite domain.
– S andF is are two sets of variables (respectively called state variables and flow

variables) such thatS \ F = ;.
– E is a set of event names.
– T is a set of transitions. A transition is a triplet(g; e; a) where,g � DjS[F j is

a constraint overS [F , called theguard of the transition,e 2 E anda is a
mapping that defines the successor states :a : DjS[F j ! DjSj.

– A � DjS[F j is an assertion over the variables values.
– I � DjS[F j defines the set of initial states of the automaton.

node SwithModelflow f1,f2 : bool;event Open, Close;state open : bool;transnot open |- Open -> open := true;open |- Close -> open := false;assert (not open) => (f1=f2);edon open open
Close

Open

Switch
f1 f2

Figure 2. An AltaRica model of a switch

The states of an automaton are elements ofDjS[F j. A transitiont = (g; e; a) is
valid in the state(s; f), which is denoted byt 2 valid(s; f), if :

– (s; f) 2 g
– s0 = a(s; f) ^ 9f 0 2 DjF j; s:t: (s0; f 0) 2 A
A state graphis a tupleG = (S;E; T; I), whereS is a set of states,E is a set of

events,T � S � E � S is a set of transitions andI � S is the set of initial states.
A state graph characterizes all behaviors of a finite state machine. Abehaviorin the
state graph is a sequences0t0s1t1 : : : such that :

– s0 2 I and8i � 0, si 2 S.
– and8i � 0; ti = (si; e; si+1) 2 T .

A states of G is reachableif there exists a behavior inG yielding tos.
Given a constraint automatonA = hD;F;E; S; T;A; Ii, the state graphGA =(SA; EA; TA; I) associated toA is a follows.
– SA = DjS[F j, EA = E.
– h(s; f); e; (s0; f 0)i 2 TA if and only if

– (s; f) 2 A
– 9(g; e; a) 2 valid(s; f), s0 = a(s; f) ^ (s0; f 0) 2 A

– IA = I \A
Usually,GA is assumed to be restricted to its reachable states.

The reader should notice that the flow variables are not directly assigned by the
transitions ; their values are only defined throughA by the values of state variables.

2.2. Components

As already said, an AltaRica description consists in a hierarchy of components.
Each basic component describes a constraint automaton.

As an illustration, consider a simple switch which connectsor disconnects two
wires. The AltaRica description for such a switch is given onthe Fig. 2.

The interface of the switch consists of two Boolean flow variables,f1 andf2.
A Boolean state variable,open, describes the position of the switch. Variables may
be of different types : Boolean, integers, enumerations. The events,Open andClose,
and the corresponding transitions describe the opening andthe closure of the switch.
Note that the eventClose cannot occur when the switch is already closed. Finally, the
assertion specifies howf1 andf2 depend onopen. Guards and assertions are built
using the usual Boolean connectives (and, or, not, imply, . ..), the arithmetic predicate

(=, <,�, . . .) and operators (+,�, . . .).
The state graph associated with the

TFF TTF

TFT TTT

FTT FFF

OpenClose

Figure 3. State graph of the switch

switch is depicted on the Fig. 3. On this
figure, states with the same value for the
state variable (the first component of tri-
plets) are grouped. Note that the switch
controls its flows only by means of a
constraint. Therefore, values of flows
may change even if the switch does “no-
thing”.

2.3. The time in AltaRica

In AltaRica, as in synchronous languages (see [HAL 93] for a survey), the no-
tion of physical (chronometrical) time is replaced by a simple notion of order among
events.

The only relevant notions

logical
T0

E1 E2 En

S0,F0 S1,F1 S2,F2 Sn,Fn

current flow
valuestate

instantaneous

F0S0 F1S1E1 S1

events

time

Figure 4. Evolution of the time in AltaRica

are simultaneity and prece-
dence between events. The
schema 4 shows the time evo-
lution as view by an AltaRica
system. When an event occurs
some state variables of the sys-
tem are modified. Then, instan-
taneously, all flow variables are
updated from the new state va-
riables values.

2.4. Priorities

It is often convenient to set priorities among transitions (or events). Consider, for
instance, the above switch as a circuit-breaker. If a short-circuit occurs somewhere
in the circuit, it is opened instantaneously, i.e. before any user action. The transition
short-circuit is therefore of higher priority than user actions.

Formally, aconstraint automaton with prioritiesis a couple(A; <) whereA is a
constraint automaton and< is a partial order over events ofA. To be fire-able in a
state(s; f), a transitiont = (g; e; a) of (A; <) must be not only valid inA but also
maximal, i.e. such that :8(g0; e0; a0) 2 valid(s; f); [e 6= e0) e 6< e0℄ (1)

Note that priorities act on fire-able transitions, i.e. thatone first considers fire-able
transitions and then selects those of highest priority.

Coming back to the switch, in order to model short-circuits,a Boolean flow va-
riables and an eventShort-Ciruit are added to the description together with the
following transition.

FFFF FTTF

TFFF TFTF

TTFF TTTF

FFFT FTTT

TFFT

TTFT

TFTT

TTTT

CourtCircuitCloseOpen CloseClose

Figure 5. State graph of the circuit-breakers and not open |- Court-Ciruit -> open := true
The partial orderOpen<Court-Ciruit andClose<Court-Ciruit, is declared
by associating an integer to each event. The higher the integer, the higher the priority.
The state graph of the circuit-breaker is depicted on Fig. 5 (the fourth component of
states is the value ofs).

2.5. Hierarchy

As already said, an AltaRica description consists in a hierarchy of components.
Components are combined together by two means : assertions and synchronizations.
From a graphical point of view, a box corresponds to each level of the hierarchy. Wires
between boxes (at the same level) denotes the presence of assertions that constrain
component interfaces.

Let A1; : : : ;Ak be k constraint automata and let beAs be an assertion over the
flow variables of these automata. Thefree productofA1; : : : ;Ak is a constraint auto-
mataA = hD;S; F;E; T;A; Ii, whereD, S, F , E andT are the unions of respecti-
vely the domains, the state variables, the flow variables, the events and the transitions
of theAi’s, A is the conjunction of the assertions of theAi’s together with the asser-
tionAs and finallyI is the conjunction of the initial states of theAi’s.

As an illustration, the Fig. 6 depicts a system made of three components in series :
a produced, a switch and a consumer. Two assertions constrain to be equal the output
of the producer and the left flow of the switch on the one hand, the right flow of the
switch and the input of the consumer on the other hand. These assertions are set at the
system level.

When the switch is closed, the output of the producer is therefore constrained to
be equal to the input of the consumer. This illustrates long distance interactions that
are enabled by flow variables.

C:Consumerf1 f2

Main

S:SwitchP:Producerf f

node Mainsub S : Swith;P : Produer;C : Consumer;edon
Figure 6. Graphical and textual representation of a system

2.6. Synchronized products

According to the AltaRica paradigm, events are assumed to represent diseases.
Diseases are in general assumed to be independent one another and therefore not to
occur simultaneously. There are some cases however where the same event has conse-
quences on two different components. Another way to put thatis to say that two dis-
tinct events occurring in two distinct components have to besimultaneous or that they
are actually the same event occurring in two different places. This leads to the notion
of synchronized product.

LetA1; : : : ;Ak bek constraint automata, let beAs be an assertion over the flow
variables of these automata, and let~v1,. . ., ~vr be r synchronization vectors. A syn-
chronization vector contains at most one event perAi. The synchronized productA = hD;S; F;E; T;A; Ii of A1; : : : ;Ak w.r.t. to As and the~vj ’s is as their free
product except that :

– First, the setE of is the union of the events of theAi’s not occurring in a~vj ,
together with the~vj ’s.

– Second, the transition associated with a~vj is a triple(g; ~vj ; a) whereg is the
conjunction of the guards of the individual transitions labelled with the events
occurring in~vj anda is the composition of the corresponding assignments.

Note that since it is assumed that synchronization vectors contains at most one event
per component, this definition is correct even if two or more transitions of anAi are
labelled with the same event. In this case, there are severaltransitions labelled with the
same vector in the synchronized product (these transitionsare obtained by considering
in some sense the Cartesian product of individual transitions).

Consider for instance, the switch described above and suppose that the system
(depicted on the Fig. 6) contains a fourth component to modelan user. The user may
act on the switch in order to connect or to disconnect the consumer. It is described
with two transitions that are labelled with eventsOpenSwith andCloseSwith :node Userevent OpenSwith, CloseSwith;trans true |- OpenSwith ->;true |- CloseSwith ->;edon

If we consider the following events “the switch opens” (Open in the model of
the switch) and “the user opens the switch” (OpenSwith in the model of the user)
then it is a reasonable hypothesis to assume these events to be simultaneous. This
synchronism is written as a vector as follows.node Mainsub U : User; ...syn <U.OpenSwith,S.Open>;edon

In the synchronized product, the guard of transition labelled with the vector<U.OpenSwith,S.Open> is the conjunction of the guards of the transition labelled
with OpenSwith of the user and the transition labelledOpen of the switch. Similarly,
the assignment of this transition is the concatenation of the assignments of these two
transitions.

hA1:a;A2:b;A3:i��	 ��RhA1:a;A2:bi hA1:a;A3:i��	��RhA1:ai?
Figure 7. The partial order induced by the broadcast vectorhA1:a;A2:b?;A3:?i

2.7. Broadcast

The synchronization mechanism presented above is somewhatrigid. This the rea-
son why a weaker but more general mechanism, calledbroadcasting, is introduced in
AltaRica. The broadcast mechanism is based on the notion of emitters and receivers
(e.g. [HAR 86]). A component (the emitter) sends a message and the others react or
not to this message. This is not a free choice : a receiver thatcan react must react.
In AltaRica broadcast vectors, there may be an arbitrary number of “emitters” and
“receivers” (including 0). The events that are allowed to beabsent are tagged with a
question mark?.

Consider, for instance, the vectorhA1:a;A2:b?;A3:?i. The eventsb of A2
and of A3 are allowed to be absent. In other words, the broadcast vectorhA1:a;A2:b?;A3:?i is a syntactic short-cut for the four vectorshA1:a;A2:b;A3:i,hA1:a;A2:bi, hA1:a;A3:i and hA1:ai together with the priorities induced by the
partial order� : if ~v � ~w, then~v is of lower priority than~w. The partial order forhA1:a;A2:b?;A3:?i is depicted on Fig. 7.

AltaRica allows a slight generalization of the above broadcast vectors : it is pos-
sible to constrain the number of tagged events that should occur to be a greater than a
given constant. For instance,hA1:a;A2:b?;A3:?i � 1 means that at least one of the
eventsb or should occur (and therefore the vectorhA1:ai is not allowed).

3. Reliability networks as a test case

As a test case, we consider here reliability networks. Reliability networks are one
of the formalisms that are used in reliability studies to model physical systems in
which an information (a message, a fluid, a current) propagates through a network
whose components are subject to failures (see [SHI 91] for a detailed presentation of
this formalism). As we shall see, reliability networks are quite difficult to handle and
they are a good candidate to be a test case for AltaRica (and more generally for all of
the tools with the same purpose).

3.1. Reliability networks

A reliability network is a graph, directed or not, with two distinguished vertices :
a source vertexs and a target vertext. Vertices as well as edges are subject to fai-

lures (that cut them off). They are assumed to fail independently according to known
probability laws.

Two questions may be asked about a reliability network :

1. What are the minimal (for set inclusion)s-t paths ?

2. What is the probability that there is at least one workings-t paths.

As one may expect, the second problem is #P-complete and evenapproximations are
hard to compute [BAL 86].

We shall assume here, without a loss of generality, that vertices are perfect, i.e. that
only edges may fail.

At a first glance, the problem could seem simple to model :
– If a vertex is supplied by one of its in-edges then all of its out-edges are supplied

as well.
– If an edge is working then its two adjacent vertices are either both supplied or

both not supplied, otherwise there isa priori no relationship between its adjacent
edges.

The pitfall stands in strongly connected components. If such a set of vertices
contains the source vertex, then it is supplied. If it does not contain the source vertex,
then, within the above model, it can be either supplied or notsupplied, a non-sense.
The problem is therefore to compel it to be not supplied in thelatter case.

3.2. Description using AltaRica

In order to describe reliability networks within AltaRica,we shall design an Alta-
Rica node for each type of components : edges, source vertex and other vertices (the
target vertex does not differ from the other vertices).

A small reliability network together with its AltaRica graphical description is pic-
tured Fig. 8.

S1

S2

T1 T3

T2 T4

T5

T6

P1 P3 P5

P2 P4 P5

P7 P8

F FF1F1F1 F2F2F2

T2 T4

T3T1
Main

S1 P1

P2

P3

P4

P5

P6

P7

P8

T5

T6

F FF1 F1 F1

F1 F1

F2 F2

F2 F2 F2

S2

F F

F F

Figure 8. A reliability network and its graphical AltaRica representation

Now, the idea is to use broadcasting to compel strongly connected components that
do not contain the source vertex to be unsupplied. Each time an edge fails, the vertices
try to go into a state in which they are not supplied. If a vertex is still connected to the
source vertex, such a transition is not allowed.

The skeleton for the AltaRica description we sketched is given Fig. 9.
Another solution consists in defining a broadcast vectorUpdate made only of theReation’s of the vertices (with a constraint to ensure that at least one of the vertices

node Soureflow F : bool;assert F = true;edonnode Vertexflow F : bool;state supplied : bool;event Reation;assert supplied = F;transsupplied |- Reation -> supplied := false;edonnode Edgeflow F1, F2 : bool;state broken : bool;event Failure;assert (not broken) => (F1 = F2);transnot broken |- Failure -> broken := true;edonnode Mainsub S : Soure;V1,V2,...,Vk : Vertex;E1,E2,...,Em : Edge;assert S.F = E1.F1;E1.F2 = V1.F;...syn <E1.Failure,V1.Reation?,...,Vk.Reation?>;...edon
Figure 9. Skeleton of an AltaRica description for reliability networks

reacts) and to assign to this vector a high priority. In this way, failures and information
propagation through the network are separated.

4. Compilation of AltaRica descriptions in Boolean formulae

One of the key issue for the AltaRica project is the ability todesign an efficient
compiler to translate AltaRica descriptions into Boolean formulae. Since any AltaRica
description can be flattened into a constraint automaton, the problem is to compile the
textual description of a such an automatonA into a Boolean formula�A that verifies
the following properties.

– The input variables of�A are the events ofA.
– The prime implicants of�A correspond one to one to the minimalscenariiof

failure described byA, i.e. the minimal paths in the state graph associated withA that go from the initial state to a failure state.
Indeed, this compilation process looses the schedule amongevents. This is the price to
pay to be able to compile a dynamic description into a static one. Now, dealing with a
Boolean formula rather than with a constraint automaton presents many advantages :

– Probabilistic assessments can be performed in a very efficient way once the Bi-
nary Decision Diagram that encodes this formula is computed(see for instance
[DUT 99c, DUT 99b]).

– Scenariiof failure can be handled in a very efficient way as well by means of
Zero-suppressed BDDs (see for instance [DUT 97, DUT 99a].

Basically, the compilation is achieved by means of the following algo-
rithm.

1. Compute the state graphGA of A.

2. ConsiderG as reliability network, i.e. apply any algorithm that determiness� t paths (see for instance [SHI 91] for a survey on these algorithms), wheres is an
initial state ofA andt is any failure state.

If the state graphGA contains no loop, it is pretty easy to compile it into a Boo-
lean formula (in this case,GA can be seen a block diagram model [AND 93]).
If G does contain loops, its compilation into a set of Boolean equations is much
more difficult, even if some recent works provide new ideas tohandle that pro-
blem [MAD 94, DUT 96].

The above algorithm is roughly inefficient for it is well known that the state graph
is often huge, even for small size systems. Several techniques, such as partial or-
ders [GOD 96], can be used to reduce the graph actually considered.

5. Conclusion

In this paper, we presented an overview the AltaRica language. Its expressiveness
makes it suitable to perform reliability and dependabilityof critical systems. Moreo-
ver, its sound and clear semantics in terms of constraint automata allows its com-

pilation into the lower level formalisms such as fault trees, Petri nets or finite state
machines. This opens perspectives for AltaRica to be used asa support language of
both functional and dysfunctional analyses of critical systems.

There remains many works to do around AltaRica. Among them are the impro-
vement of compilation algorithms, the design of an AltaRicabased model-checker
or the introduction of real time. The AltaRica workbench gives us the opportunity to
get feedback from the industrial partners of the project. Weconsider this aspect as
mandatory in order to ensure the adequacy of the language to real-life studies.

The AltaRica project

The AltaRica project federates works done at the LaBRI on both reliability ana-
lyses and formal methods. From a scientific point of view, ourambition is to develop
a corpus of algorithms and tools to assess efficiently reliability models. This requires
also to consider methodological issues on the different waya real-life system may be
modeled.

From an industrial point of view, the AltaRica project is supported by a group of
industrial companies, including ELF-Aquitaine, CEA, Dassault-Aviation, Thomson-
CSF and Renault.

Acknowledgments

This work is supported by the Altarica Group and receives a grant of the European
funds FEDER OBJECTIVE 2.

We would like to thank here A. Arnold and A. Griffault. André and Alain can be
considered as co-authors of the present article, since the definition of the AltaRica
language and its semantics is a joined work with them.

Bibliographie

[AND 93] A NDREWS J. et MOSST., Reliability and Risk Assessment. John Wiley and Sons,
1993.

[ARN 82] ARNOLD A. et NIVAT M., « Comportements de processus ».Colloque AFCET
“Les Mathématiques de l’informatique”, 1982.

[ARN 94a] ARNOLD A., Finite Transition Systems. Prentice-Hall, 1994.
[ARN 94b] ARNOLD A., BÉGAY D. et CRUBILLÉ P.,Construction and analysis of transition

systems with MEC. World Scientific Publishers, 1994.
[BAL 86] B ALL M., « Computational complexity of network reliability analysis : an over-

view ». IEEE Transactions on Reliability, vol. R-35, p. 230–239, 1986.
[BON 97] BONFATTI F., MONARI P. et SAMPIERI U., IEC 1131-3 Programming Methodo-

logy. ISBN 2-9511585-0-5, 1997.
[BOU 93] BOUISSOUM., « The FIGARO Dependability Evaluation Workbench in Use :Case

Studies for Fault-Tolerant Computer Systems ».23th Annual Symposium on Fault Tolerant
Computing, FTCS’93, 1993.

[BRL 94] BRLEK S. et RAUZY A., « Synchronization of Constrained Transition Systems ».
HONG H., Ed., Proceedings of the First International Symposium on Parallel Symbolic
Computation (PASCO’94), p. 54–62, Linz, Ostreich, 1994. World Scientific Publishing.

[COR 97] CORSINI M.-M. et RAUZY A., « Toupie : the�-calculus over finite domains as a
constraint language ».Journal of Automated Reasonning, vol. 17, p. 143–171, 1997.

[DUT 96] DUTUIT Y., RAUZY A. et SIGNORETJ.-P., « Réséda : a Reliability Network Analy-
ser ». CACCIABUE C. et PAPAZOGLOU I., Eds.,Proceedings of European Safety and Re-
liability Association Conference, ESREL’96, vol. 3, p. 1947–1952. Springer Verlag, 1996.
ISBN 3-540-76051-2.

[DUT 97] DUTUIT Y. et RAUZY A., « Exact and Truncated Computations of Prime Implicants
of Coherent and non-Coherent Fault Trees within Aralia ».Reliability Engineering and
System Safety, vol. 58, p. 127–144, 1997.

[DUT 99a] DUTUIT Y. et RAUZY A., « A Guided Tour of Minimal Cutsets Handling by means
of Binary Decision Diagrams ».Proceedings of Probabilistic Safety Assessment confe-
rence, PSA’99, 1999. To appear.

[DUT 99b] DUTUIT Y. et RAUZY A., « New algorithms to compute importance factors
CPr, MIF, CIF, DIF, RAW and RRW ».Proceedings of the European Safety and Reliability
Association Conference, ESREL’99. European Safety and Reliability Association, 1999. to
appear.

[DUT 99c] DUTUIT Y., RAUZY A. et SIGNORETJ.-P., « Evaluation of Systems Reliability by
means of Binary Decision Diagram ».Proceedings of the Probabilistic Safety Assessment
Conference, PSA’99, 1999. to appear.

[GOD 96] GODEFROIDP.,Partial-Order Methods for the Verification of Concurrent Systems,
vol. 1032. LNCS, 1996. ISBN 3-540-60761-1.

[HAL 93] H ALBWACHS N.,Synchronous programming of reactive systems. Kluwer Academic
Publishers, 1993.

[HAR 86] HAREL D., PNUELI A., SCHMIDT J. et SHERMAN R., « On the Formal Semantics
of Statecharts ».Proceeding of the First IEEE Symposium on Logic in Computer Science,
p. 54–64, New-York, 1986. IEEE Press.

[HAR 87] HAREL D., « StateCharts : a visual approach to complex systems ».Science of
Computer Programming, vol. 8, p. 231–275, 1987.

[HEN 89] VAN HENTENRYCK P.,Constraint Satisfaction in Logic Programming. Logic Pro-
gramming Series. MIT Press, 1989. ISBN 0-262-08181-4.

[HUT 94] HUTINET T., LAJEUNESSES. et MARTIN L., « Atelier FIABEX, vers une intégra-
tion des études SdF en phase de conception ».Actes du Congrés�� 94, ESREL’94, p.
694–700, La Baule, 1994.

[MAD 94] M ADRE J.-C., COUDERT O., FRAÏSSÉ H. et BOUISSOU M., « Application of a
New Logically Complete ATMS to Digraph and Network-Connectivity Analysis ». Pro-
ceedings of the Annual Reliability and Maintainability Symposium, ARMS’94, p. 118–123,
1994. Annaheim, California.

[MAR 91] M ARANINCHI F., « The Argos language : Graphical Representation of Automata
and Description of Reactive Systems ».IEEE Workshop on Visual Languages, Kobe, Japan,
October 1991.

[SHI 91] SHIER D., Network Reliability and Algebraic Structures. Oxford Science Publica-
tions, 1991.

[SIG 95] SIGNORET J.-P., « Moca-RP V9 ». Rapport technique, Elf-Aquitaine, 1995. rapport
interne ELF Aquitaine Production – Direction Recherche et Développement Exploration
Production – réf. EP/P/SE/MRT-ARF/JPS9634 – simulation deMonte-Carlo de réseaux de
Petri stochastiques.

[TUR 93] TURNER K., Using Formal Description Techniques. John Wiley & Sons, 1993.
ISBN 0-471-93455-0.

