AltaRica

Constraint automata as a description language
G. Point

IXl/LaBRI - 110, rue Achard 33300 Bordeaux - FRANCE

A. Rauzy
LaBRI - 351, cours de Libération 33405 Talence - FRANCE

ABSTRACT : This paper presents an overview of the AltaRiecaleage. This language is the
core of the AltaRica workbench, which is dedicated to réligtand dependability analyses of
critical systems. The AltaRica language is both formal,rteuge mathematical soundness, and
graphical, to be user-friendly. It stands at a high level i@rdésigned to be compiled into lower
level formalisms such as Boolean formulae, Petri nets aefgtate automata. It can be seen as
a convenient mean to describe constraint automata.

KEYWORDS : High level description languages, reliabilitpskbenches.

1. Introduction

Reliability analyses of critical systems are, in generabfold. First, they aim to
determine, as exhaustively as possible, the varsmesarii of failure of the system
under study. Second, they try to quantify thesenarij i.e. to assess the probability
that the system fails during a given mission time. Severah&disms are used as sup-
port languages of such analyses, e.g. Fault Trees, Pesrionétlarkov graphs (see
[AND 93] for a review). Each of them has distinguishing featithat make it suitable
to capture some (but not all) of the aspects of the behavitreobystem. They share
however two important characteristics. First, they aréaliotmal and graphical. This
ensures their mathematical soundness on the one hand anseth&iendship of the
tools implementing them on the other hand. Second, theylstaa rather low level.
This makes it possible to design simple and efficient assarssatgorithms. This has
also the drawback to make it difficult to design and to mamthe models, because
of their inherent distance to the system under study.

The AltaRica workbench is designed to tackle this lattefiadifty. It is based on
the high level AltaRica language. The AltaRica languagédss both formal and gra-
phical. Moreover, it is designed to be compiled into the rioered low level for-
malisms. The idea to combine graphical and textual deseniptis indeed very na-

| node main’
! ‘ Moca-RP
! sub ... || i
e U ET = d
Systems AltaRica Language %
MEC
Toupie

(Constraint Automata;
Models Tools

Figure 1. The AltaRica workbench at a glance

tural. It is applied in many areas, including the design ahomunication protocols
(e.g. SDL [TUR 93]), the design of programmable logic colms (e.g. IEC 1131-
3 languages[BON 97]) or the design of reactive systems Stajecharts [HAR 87],
Argos [MAR 91]). However, none of these formalisms is welited for reliability
analyses for they are designed to specify programs and rdedgoribe behaviors of
physical systems in presence of diseases. Several toots designed for this lat-
ter purpose (e.g. IRBEX[HUT 94], FIGARO[BOU 93]). The originality of AltaRica
(w.r.t. these tools) is twofold. First, the language had-defined semantics. Second,
the workbench is designed to embed tools stemmed from betheliability engi-
neering framework (Aralia [DUT 97], Moca-RP [SIG 95]) ancetformal methods
framework (MEC [ARN 94b], Toupie [COR 97]), as illustrate@jF1.

The AltaRica semantics is defined in terms of constraint mata [BRL 94].
Constraint automata are usual state automata, exceptt#ttes @nd transitions are
keptimplicit, i.e. are described by means of constraines gariables. One of they key
advantages of this presentation is that it makes it postitilescribe long distance in-
teractions (through shared variables) without loosingldisality of the descriptions.
Constraint automata generalize both finite state machidePatri nets. Compiling
an AltaRica description into a Petri net or a finite state aaton is therefore rather
easy. The compilation into Fault Trees is also possiblépalgh this process trans-
forms sequences of events into sets of events (loosing iminathe notion of event
schedule).

This paper aims to provide the reader with an overview of Rita. We put the
emphasis on the language for it plays a central role in thdeyhmject. The section 2
is devoted to the main features of the language. We presestraint automata that are
its mathematical basis. An illustrative example is presésection 3. Finally, section 4
discuss the problems raised by the compilation of AltaRiscdptions into Boolean
formulae.

2. TheAltaRicalanguage
2.1. Constraint Automata

The mathematical foundation of the AltaRica language isbtéon of constraint
automata [BRL 94, COR 97]. Constraint automata are likedfigiiaite automata except
that states are described implicitly by means of conssaér variables.

Intuitively, a constraint automaton is a set of transitiohthe form

GV) =V =0)

whereV is a set of variables that take their values into a finite onitdidomainD,

G(V) is a constraint (or a guard, or a Boolean condition) overehesiablesg is an
event name and finally’ = o(V) is an assignment of variables &f A state of the
automaton is just a valuation (with elements/o¥ of the variables of/. A transition
G(V) = V = ¢(V) means that if the automaton is in a state that ver#€g) and
if the evente occurs, then it goes into the new statg’).

The name “guarded automata” could be used instead of “@ins@mutomata”.
However, the term constraint refers here to algorithms tedthndle set of states.
These algorithms are actually inspired from constrainviagl techniques (see for
instance [HEN 89]).

As we shall see, several constraint automata can be syrizbcoin order to give
a larger constraint automata. The synchronization meshams derived from the
Arnold-Nivat model [ARN 82, ARN 94a].

AltaRica is basically a language to describe constraindraata. The language is
hierarchical : each component describes a constraint aitomand components are
combined together through the synchronization processtheosake of the conve-
nience, several features are added to the basic model :

— The description is hierarchical, as we just mentioned,armhts may be syn-

chronized.

— Priorities may be set among events.

— Variables are separated into two categories, namelysstatiéables and flow
variables. The formers are local to components. The lattdrat depend func-
tionally on the formers, describe the interfaces of comptse

— Some constraints may be set on the states that constragwitbmaton to stay
into a subset oDV

Formally, aconstraint automatoris a tupleA = (D, S, F, E, T, A, I) where :

— D is afinite or infinite domain.

— S andF is are two sets of variables (respectively called stateabtes and flow
variables) such thai N F = {).

— Eis a set of event names.

— Tis a set of transitions. A transition is a triplgt, e,) where,g C DISYF s
a constraint oveS U F, called theguard of the transitione € E anda is a
mapping that defines the successor statesP!5“'| — DISI,

— A C DISYFlis an assertion over the variables values.

— I C DISYFl defines the set of initial states of the automaton.

node SwitchModel
flow £1,f2 : bool;
event Open, Close;

state open : bool; Switch

trans f1 ® Close ‘,fZ
not open |- Open -> open := true;
open |- Close -> open := false; @

assert (not open) => (f1=£2); Open

edon

Figure2. An AltaRica model of a switch

The states of an automaton are element®0of-7. A transitiont = (g, e, a) is
valid in the statgs, f), which is denoted by € valid(s, f), if :

- (57 f) €y

—s' =a(s,f)AIf e DIFl st. (s, f) e A

A state graphs a tupleG = (S, E, T, I), whereS is a set of stated; is a set of
events,' C S x E x S is a set of transitions antl C S is the set of initial states.
A state graph characterizes all behaviors of a finite statehina. Abehaviorin the
state graph is a sequenggosit; ... such that:

—spelandvi>0,s;€8.

— andvi > 0,t; = (si,e,sH_l) eT.
A states of G is reachabléf there exists a behavior i yielding tos.

Given a constraint automatod = (D, F, E, S, T, A, I), the state grapli 4 =
(Sa,Ea,T4,I)associated tof is a follows.

- S4=DISYFI B, =E.

— (s, f),e, (s, f")) € T4 if and only if

- (57 f) €A
— J(g,e,a) € valid(s, f),s" =a(s, f)n(s',f) € A

—I,=1INnA
Usually,G 4 is assumed to be restricted to its reachable states.

The reader should notice that the flow variables are not tirassigned by the
transitions ; their values are only defined throutiby the values of state variables.

2.2. Components

As already said, an AltaRica description consists in a hitraof components.
Each basic component describes a constraint automaton.

As an illustration, consider a simple switch which connemtslisconnects two
wires. The AltaRica description for such a switch is givertloa Fig. 2.

The interface of the switch consists of two Boolean flow Jalga, f1 and £2.
A Boolean state variablepen, describes the position of the switch. Variables may
be of different types : Boolean, integers, enumerations.lentsppen andClose,
and the corresponding transitions describe the openingrendosure of the switch.
Note that the evertlose cannot occur when the switch is already closed. Finally, the
assertion specifies howt andf2 depend orppen. Guards and assertions are built
using the usual Boolean connectives (and, or, not, imply, the arithmetic predicate

(=, <, <, ...)and operatorsy, x, ...).

The state graph associated with the
switch is depicted on the Fig. 3. On this
figure, states with the same value for the
state variable (the first component of tri-
plets) are grouped. Note that the switch
controls its flows only by means of a
constraint. Therefore, values of flows
may change even if the switch does “no-
thing”.

————— ——\

FF

s
3
_|

n

Clos Open

e

—
T
T
-
—
T

-
M
—
-
—
—

Figure 3. State graph of the switch 23 Thetimein AltaRica

In AltaRica, as in synchronous languages (see [HAL 93] fouvey), the no-
tion of physical (chronometrical) time is replaced by a denpotion of order among
events.

The only relevant notions

events

are simultaneity and prece- // L —

dence between events. The‘ ‘El ‘Ez | | ‘En
schema 4 shows the time evo- soro SLF1 | S22 \ [snFn logical
lution as view by an AltaRica ™ fime
system. When an event occurs / \

some state variables of the sys-[so—Et-si|Fo—5L . ry urtent _ flow
tem are modified. Then, instan- | | |

taneously, all flow variables are mstantaneous

updated from the new state va-
riables values.

Figure 4. Evolution of the time in AltaRica

2.4. Priorities

It is often convenient to set priorities among transitiomsdvents). Consider, for
instance, the above switch as a circuit-breaker. If a stioctiit occurs somewhere
in the circuit, it is opened instantaneously, i.e. befong aser action. The transition
short-circuit is therefore of higher priority than useriaos.

Formally, aconstraint automaton with prioritiess a couple(A, <) whereA is a
constraint automaton and is a partial order over events of. To be fire-able in a
state(s, f), a transitiont = (g, e, a) of (A, <) must be not only valid ind but also
maximal i.e. such that :

V(gse,a') € valid(s, f),[e £ ¢ = e £ ¢ (1)

Note that priorities act on fire-able transitions, i.e. thag first considers fire-able
transitions and then selects those of highest priority.

Coming back to the switch, in order to model short-circugt8Boolean flow va-
riablesc and an everghort-Circuit are added to the description together with the
following transition.

CourtCircuit

Figureb. State graph of the circuit-breaker

sc and not open |- Court-Circuit -> open := true

The partial ordeDpen<Court-Circuit andClose<Court-Circuit, is declared
by associating an integer to each event. The higher thedntéwe higher the priority.
The state graph of the circuit-breaker is depicted on Fighé fourth component of
states is the value afc).

2.5. Hierarchy

As already said, an AltaRica description consists in a hidnaof components.
Components are combined together by two means : assertidnsyachronizations.
From a graphical point of view, a box corresponds to eacH tdbe hierarchy. Wires
between boxes (at the same level) denotes the presenceetfi@ss that constrain
component interfaces.

Let 4y,..., A, bek constraint automata and let b, be an assertion over the
flow variables of these automata. Tinee producof A, ..., A is a constraint auto-
matad = (D,S,F,E,T,A,I), whereD, S, F, E andT are the unions of respecti-
vely the domains, the state variables, the flow variabl@setkents and the transitions
of the A;'s, A is the conjunction of the assertions of tAg's together with the asser-
tion A; and finally! is the conjunction of the initial states of thg’s.

As an illustration, the Fig. 6 depicts a system made of thomeponents in series :
a produced, a switch and a consumer. Two assertions cangirbée equal the output
of the producer and the left flow of the switch on the one hamel right flow of the
switch and the input of the consumer on the other hand. Thessetions are set at the
system level.

When the switch is closed, the output of the producer is thezeconstrained to
be equal to the input of the consumer. This illustrates loistadce interactions that
are enabled by flow variables.

node Main

Main sub S : Switch;
P:Produc f1, S:Switch Jf2_f,C:Consumer P : Producer;
C : Consumer;
edon

Figure6. Graphical and textual representation of a system

2.6. Synchronized products

According to the AltaRica paradigm, events are assumedpmesent diseases.
Diseases are in general assumed to be independent one raauathierefore not to
occur simultaneously. There are some cases however wheesarhe event has conse-
guences on two different components. Another way to putishiat say that two dis-
tinct events occurring in two distinct components have tesibriltaneous or that they
are actually the same event occurring in two different da@dis leads to the notion
of synchronized product.

Let Ay, ..., A; bek constraint automata, let b&; be an assertion over the flow
variables of these automata, and 4¢t.. ., ;. be r synchronization vectors. A syn-
chronization vector contains at most one event der The synchronized product
A= (D,S,F,E,T,AI) of Ay,..., Ay w.rt. to A; and theuv;’s is as their free
product except that :

— First, the sety of is the union of the events of th4;’s not occurring in a;,

together with theyj's.

— Second, the transition associated with;ds a triple (g, v, a) whereg is the
conjunction of the guards of the individual transitionsdbdéd with the events
occurring inv; anda is the composition of the corresponding assignments.

Note that since it is assumed that synchronization vectmmgains at most one event
per component, this definition is correct even if two or meemsitions of and; are
labelled with the same event. In this case, there are sevanaitions labelled with the
same vector in the synchronized product (these transitimmebtained by considering
in some sense the Cartesian product of individual tramsijio

Consider for instance, the switch described above and sepghat the system
(depicted on the Fig. 6) contains a fourth component to madelser. The user may
act on the switch in order to connect or to disconnect the woes. It is described
with two transitions that are labelled with evebggenSwitch andCloseSwitch:
node User

event OpenSwitch, CloseSwitch;
trans true |- OpenSwitch ->;
true |- CloseSwitch ->;
edon

If we consider the following events “the switch open§pén in the model of
the switch) and “the user opens the switchbpénSwitch in the model of the user)
then it is a reasonable hypothesis to assume these evenésgionbltaneous. This
synchronism is written as a vector as follows.
node Main

sub U : User; ...
sync <U.0OpenSwitch,S.0Open>;
edon

In the synchronized product, the guard of transition lagkMith the vector
<U.OpenSwitch,S.0pen> is the conjunction of the guards of the transition labelled
with DpenSwitch of the user and the transition labellegen of the switch. Similarly,
the assignment of this transition is the concatenation@&signments of these two
transitions.

<¢41 -a, ./42.[7, A3.C>
<A1.G,A2.b> (Al.a,A3.C>

(Al.a>
Figure7. The partial order induced by the broadcast vectet; .a, A>.b?7, As.c?)
2.7. Broadcast

The synchronization mechanism presented above is someigithiT his the rea-
son why a weaker but more general mechanism, calteddcastingis introduced in
AltaRica. The broadcast mechanism is based on the notiomitfegs and receivers
(e.g. [HAR 86]). A component (the emitter) sends a messagdetamothers react or
not to this message. This is not a free choice : a receivercdratreact must react.
In AltaRica broadcast vectors, there may be an arbitrarybarmof “emitters” and
“receivers” (including 0). The events that are allowed toabsent are tagged with a
guestion mark.

Consider, for instance, the vectdu;.a, A5.b7, As.c?). The eventsh of A
and ¢ of A3 are allowed to be absent. In other words, the broadcast wecto
(A .a, Ay.07, A3.c?) is a syntactic short-cut for the four vectdtd; .a, A .b, As.c),
(A1.a, As.b), (A;.a, As.c) and (A;.a) together with the priorities induced by the
partial orderC : if ¥ C o, thend is of lower priority thams. The partial order for
(A .a, A3.b7, As3.c?) is depicted on Fig. 7.

AltaRica allows a slight generalization of the above br@estwectors : it is pos-
sible to constrain the number of tagged events that shouldrdo be a greater than a
given constant. For instanced; .a, A2.b?, As.c?) > 1 means that at least one of the
events) or ¢ should occur (and therefore the vectet; .a) is not allowed).

3. Reliability networksasatest case

As a test case, we consider here reliability networks. R#iip networks are one
of the formalisms that are used in reliability studies to mlgohysical systems in
which an information (a message, a fluid, a current) promegtirough a network
whose components are subject to failures (see [SHI 91] fataildd presentation of
this formalism). As we shall see, reliability networks argtq difficult to handle and
they are a good candidate to be a test case for AltaRica (anel gemerally for all of
the tools with the same purpose).

3.1. Rdliability networks

A reliability network is a graph, directed or not, with twostihguished vertices :
a source vertex and a target vertex Vertices as well as edges are subject to fai-

lures (that cut them off). They are assumed to fail indepetigaccording to known
probability laws.
Two questions may be asked about a reliability network :

1. What are the minimal (for set inclusios) paths ?
2. What is the probability that there is at least one workirigpaths.

As one may expect, the second problem is #P-complete anda@proximations are
hard to compute [BAL 86].

We shall assume here, without a loss of generality, thaicesrare perfect, i.e. that
only edges may fail.

At a first glance, the problem could seem simple to model :

— Ifavertexis supplied by one of its in-edges then all of ittedges are supplied

as well.

— If an edge is working then its two adjacent vertices areeeitioth supplied or
both not supplied, otherwise thereigriori no relationship between its adjacent
edges.

The pitfall stands in strongly connected components. Ihsacset of vertices
contains the source vertex, then it is supplied. If it dogscoatain the source vertex,
then, within the above model, it can be either supplied orsopiplied, a non-sense.
The problem is therefore to compel it to be not supplied inlalter case.

3.2. Description using AltaRica

In order to describe reliability networks within AltaRioae shall design an Alta-
Rica node for each type of components : edges, source vartegther vertices (the
target vertex does not differ from the other vertices).

A small reliability network together with its AltaRica grhijgal description is pic-
tured Fig. 8.

Sle PL T P3 T3 P5 15

P7 P8

S2¢ e 16
P2 10 P4 14 PS5

Figure 8. A reliability network and its graphical AltaRica represatibn

Now, the idea is to use broadcasting to compel strongly ctiedecomponents that
do not contain the source vertex to be unsupplied. Each timeglge fails, the vertices
try to go into a state in which they are not supplied. If a weigestill connected to the
source vertex, such a transition is not allowed.

The skeleton for the AltaRica description we sketched iswgivig. 9.

Another solution consists in defining a broadcast vegtdate made only of the
Reaction’s of the vertices (with a constraint to ensure that at leastaf the vertices

node Source
flow F : bool;
assert F = true;
edon

node Vertex

flow F : bool;

state supplied : bool;

event Reaction;

assert supplied = F;

trans

supplied |- Reaction -> supplied := false;

edon

node Edge

flow F1, F2 : bool;

state broken : bool;

event Failure;

assert (not broken) => (F1 = F2);

trans

not broken |- Failure -> broken := true;

edon

node Main
sub S : Source;
V1i,V2,...,Vk : Vertex;
E1,E2,...,Em : Edge;
assert S.F = E1.F1;
E1.F2 = V1.F;

sync <El.Failure,V1.Reaction?,...,Vk.Reaction?>;
edon

Figure 9. Skeleton of an AltaRica description for reliability netsr

reacts) and to assign to this vector a high priority. In thégwailures and information
propagation through the network are separated.

4. Compilation of AltaRica descriptionsin Boolean formulae

One of the key issue for the AltaRica project is the abilitydsign an efficient
compiler to translate AltaRica descriptions into Booleamfulae. Since any AltaRica
description can be flattened into a constraint automatemitbblem is to compile the
textual description of a such an automatdinto a Boolean formula 4 that verifies
the following properties.

— The input variables af 4 are the events afl.

— The prime implicants o$ 4 correspond one to one to the mininsgenariiof

failure described by, i.e. the minimal paths in the state graph associated with
A that go from the initial state to a failure state.
Indeed, this compilation process looses the schedule asargs. This is the price to
pay to be able to compile a dynamic description into a state& dlow, dealing with a
Boolean formula rather than with a constraint automatosgares many advantages :
— Probabilistic assessments can be performed in a veryegftigiay once the Bi-
nary Decision Diagram that encodes this formula is comp(ged for instance
[DUT 99c¢, DUT 99b]).
— Scenariiof failure can be handled in a very efficient way as well by nseah
Zero-suppressed BDDs (see for instance [DUT 97, DUT 99a].

Basically, the compilation is achieved by means of the foitg algo-

rithm.

1. Compute the state graghy of A.

2. ConsiderG as reliability network, i.e. apply any algorithm that detémes
s — t paths (see for instance [SHI 91] for a survey on these alyus}, wheres is an
initial state of. A andt is any failure state.

If the state graphy 4 contains no loop, it is pretty easy to compile it into a Boo-
lean formula (in this case(7 4 can be seen a block diagram model [AND 93]).
If G does contain loops, its compilation into a set of Booleanaéqus is much
more difficult, even if some recent works provide new ideathémdle that pro-
blem [MAD 94, DUT 96].

The above algorithm is roughly inefficient for it is well knowhat the state graph
is often huge, even for small size systems. Several techajgguch as partial or-
ders [GOD 96], can be used to reduce the graph actually cemresid

5. Conclusion
In this paper, we presented an overview the AltaRica langukigexpressiveness

makes it suitable to perform reliability and dependabitifycritical systems. Moreo-
ver, its sound and clear semantics in terms of constraimnaata allows its com-

pilation into the lower level formalisms such as fault treBstri nets or finite state
machines. This opens perspectives for AltaRica to be usedsapport language of
both functional and dysfunctional analyses of criticalteyss.

There remains many works to do around AltaRica. Among thesrtlae impro-
vement of compilation algorithms, the design of an AltaRiesed model-checker
or the introduction of real time. The AltaRica workbencheagws the opportunity to
get feedback from the industrial partners of the project.ddlasider this aspect as
mandatory in order to ensure the adequacy of the languageltdife studies.

The AltaRica project

The AltaRica project federates works done at the LaBRI ot Ipeliability ana-
lyses and formal methods. From a scientific point of view, @mbition is to develop
a corpus of algorithms and tools to assess efficiently riitiamodels. This requires
also to consider methodological issues on the differentavegal-life system may be
modeled.

From an industrial point of view, the AltaRica project is popted by a group of
industrial companies, including ELF-Aquitaine, CEA, Dask-Aviation, Thomson-
CSF and Renault.

Acknowledgments

This work is supported by the Altarica Group and receivesagof the European
funds FEDER OBJECTIVE 2.

We would like to thank here A. Arnold and A. Griffault. AndrééAlain can be
considered as co-authors of the present article, sincedfierittbn of the AltaRica
language and its semantics is a joined work with them.

Bibliographie

[AND 93] ANDREWSJ. et MossT., Reliability and Risk Assessmerdiohn Wiley and Sons,
1993.

[ARN 82] ARNOLD A. et NIVAT M., « Comportements de processus olloque AFCET
“Les Mathématiques de I'informatique’982.

[ARN 94a] ARNOLD A., Finite Transition System$ rentice-Hall, 1994.

[ARN 94b] ARNOLD A., BEGAY D. et CRUBILLE P.,Construction and analysis of transition
systems with MECWorld Scientific Publishers, 1994.

[BAL 86] BALL M., « Computational complexity of network reliability agals : an over-
view ». IEEE Transactions on Reliabilityol. R-35, p. 230-239, 1986.

[BON 97] BONFATTI F., MONARI P. et S\MPIERI U., IEC 1131-3 Programming Methodo-
logy. ISBN 2-9511585-0-5, 1997.

[BOU 93] BouissouM., « The FIGARO Dependability Evaluation Workbench in Uszase
Studies for Fault-Tolerant Computer System28th Annual Symposium on Fault Tolerant
Computing, FTCS’931993.

[BRL 94] BRLEK S. et Rauzy A., « Synchronization of Constrained Transition Systems ».
HoNG H., Ed., Proceedings of the First International Symposium on PataBymbolic
Computation (PASCO’94p. 54-62, Linz, Ostreich, 1994. World Scientific Publighin

[COR 97] GoRrsINIM.-M. et RauzY A., « Toupie : theu-calculus over finite domains as a
constraint language >Journal of Automated Reasonningl. 17, p. 143-171, 1997.

[DUT 96] DUTUITY., RAUuzY A. et SGNORETJ.-P., « Réséda : a Reliability Network Analy-
ser». QACCIABUE C. et RPAzOGLOU I, Eds.,Proceedings of European Safety and Re-
liability Association Conference, ESREL;9%I. 3, p. 1947-1952. Springer Verlag, 1996.
ISBN 3-540-76051-2.

[DUT 97] DuTuITY. et RauzY A., « Exact and Truncated Computations of Prime Implicants
of Coherent and non-Coherent Fault Trees within AraliaReliability Engineering and
System Safetyol. 58, p. 127-144, 1997.

[DUT 99a] DuTuIT Y. et Rauzy A., « A Guided Tour of Minimal Cutsets Handling by means
of Binary Decision Diagrams ». Proceedings of Probabilistic Safety Assessment confe-
rence, PSA'991999. To appear.

[DUT 99b] DuTuIT Y. et Rauzy A., « New algorithms to compute importance factors
CPr, MIF, CIF, DIF, RAW and RRW »Proceedings of the European Safety and Reliability
Association Conference, ESREL' ®uropean Safety and Reliability Association, 1999. to
appear.

[DUT 99¢] DUTUIT Y., RAUzZY A. et SGNORETJ.-P., « Evaluation of Systems Reliability by
means of Binary Decision Diagram >Proceedings of the Probabilistic Safety Assessment
Conference, PSA’99999. to appear.

[GOD 96] GobEFROIDP.,Partial-Order Methods for the Verification of ConcurrentsBsms
vol. 1032. LNCS, 1996. ISBN 3-540-60761-1.

[HAL 93] HALBWACHS N., Synchronous programming of reactive systeifiswer Academic
Publishers, 1993.

[HAR 86] HAREL D., PNUELI A., SCHMIDT J. et SHERMAN R., « On the Formal Semantics
of Statecharts » Proceeding of the First IEEE Symposium on Logic in Computerise
p. 54-64, New-York, 1986. IEEE Press.

[HAR 87] HAREL D., « StateCharts : a visual approach to complex systemScience of
Computer Programmingol. 8, p. 231-275, 1987.

[HEN 89] vAN HENTENRYCK P.,Constraint Satisfaction in Logic Programmingogic Pro-
gramming Series. MIT Press, 1989. ISBN 0-262-08181-4.

[HUT 94] HUTINET T., LAJEUNESSES. et MARTIN L., « Atelier FIABEX, vers une intégra-
tion des études SdF en phase de conceptiorAstes du Congrédp 94, ESREL'94p.
694-700, La Baule, 1994.

[MAD 94] M ADRE J.-C., @UDERT O., FRAISSEH. et BouissouM., « Application of a
New Logically Complete ATMS to Digraph and Network-Conrgity Analysis ». Pro-
ceedings of the Annual Reliability and Maintainability $yosium, ARMS'94p. 118-123,
1994. Annaheim, California.

[MAR 91] MARANINCHI F., « The Argos language : Graphical Representation of Aatam
and Description of Reactive SystemslEEE Workshop on Visual Languagé®be, Japan,
October 1991.

[SHI 91] SHIER D., Network Reliability and Algebraic StructureOxford Science Publica-
tions, 1991.

[SIG 95] SGNORETJ.-P., « Moca-RP V9 ». Rapport technique, Elf-Aquitain€@3.%apport
interne ELF Aquitaine Production — Direction Recherche év&oppement Exploration
Production — réf. EP/P/SE/MRT-ARF/JPS9634 — simulatioMdate-Carlo de réseaux de
Petri stochastiques.

[TUR 93] TurNER K., Using Formal Description TechniquesJohn Wiley & Sons, 1993.
ISBN 0-471-93455-0.

