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1.

Abstract. The AltaRica formalism is designed for describing complex systems consisting
of a number of interacting components. Its semantics is expressed in terms of transition
systems so that a system described in this language can be analysed by any technique or
tool applicable to transition systems.

The components of a system have two kinds of interactions

e event synchronisation, like in the synchronized product of transition systems of Arnold
and Nivat,

¢ interface coordination: with each component are associated interfaces whose values
depend on the state of the component as well as on the values of interfaces of other
components of the system.

Another feature of AltaRica is the possibility of defining hierarchical systems: some subsys-
tems can be encapsulated and their mutual interactions as well as their interactions with
the rest of the system are supervised by a controller.

Keywords: AltaRica, safety critical systems, transition systems, hierarchical systems,
synchronization, interface coordination.

Introduction

In more and more industrial products (aircrafts, cars, nuclear plants, chemical plants, etc.),

hardware and software computer systems play a more and more important role, especially for
implementing control functions. These systems are safety-critical [Lev95] and consequently must
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be carefully designed and exhaustively checked. Most of this analysis work, or inspection work,
must be conducted on a mathematical model of the system under study [Par95].

A characteristic feature of these systems is that they consist of several kinds of components of
various nature: physical components (mechanical, electrical, chemical) and software components,
all interacting in several and various ways (synchronizations, exchanges of messages, sensors and
controllers, etc.). Therefore a mathematical model of these systems must be able to describe the
individual components as well as the ways they interact, and to define what the result of these
interactions is.

After the seminal work of Petri [Pet62], several such models were proposed in the litterature
in the seventies, ranging from programming languages like CSP [HoaT78] to algebraic models
like CCS [Mil73, HM85]. Among them, COSY [LTS79, JL92| focuses on the synchronization
mechanisms between agents and resources. The synchronization mechanism is also the main
feature of the model introduced by Arnold and Nivat [AN82, Arn94|, but this model does not
distinguish between the natures of the components of the system.

Although the synchronized product of transition systems of Arnold and Nivat is a model for
a very wide range of systems [ABC94], it is in some sense too basic or too abstract to be of
practical use for engineers. In particular some basic kinds of physical interactions occuring in
concrete systems cannot be simply expressed in this model.

Therefore to meet practical needs expressed by engineers involved in the development of
critical systems in various industrial branches (avionics, ground transportations, energy) we
have extended this basic model in two directions

e by generalizing the notion of a synchronization vector in order to express broadcast com-
munications and by assigning priorities to these vectors,

e by adding constraints that express mutual dependencies on the states of the components
[BR94, FV94], provided that there is a way for a component to get information about the
state of another component.

Another feature that is really important from a practical point of view is the possibility to
define hierarchical systems (i.e. systems built on from subsystems) so that a subsystem can be
substituted for an equivalent one without changing the global system.

The AltaRica formalism was designed to express these basic constructs, whose semantics is
precisely and unambiguously defined in terms of transition systems, on which it is possible to
perform simulation as well as verification.

In the first part of this paper we introduce the AltaRica components in the form of interfaced
transition systems. In the second part, we introduce the hierarchical components, called nodes,
and we show that they still are interfaced transition systems. Then we introduce a notion of
bisimulation that is consistent with the hierarchical constructs of AltaRica. The main features
of the formalism will be illustrated by small examples that directly come from more realistic case
studies.



2. AltaRica components

A component of a complex system has a finite number of state variables, say s1, 82, ..., Sp, each s;
ranging over a domain S; and a finite number of flow variables, say fi,..., fm, each one ranging
over a domain Fj.

The difference of nature between state variables and flow variables is that the values of the
first ones are purely local, as if they were inside a black box, and the environment (i.e., other
components of the system) can never access directly to their values. On the contrary the second
ones are precisely used to exchange information between the component and its environment.

Very often, the values of the flow and the state variables are not completely independent,
and there are strong relationships between these values, so that some elements of the cartesian
product S7 x---x S, x F1 X ---x F,, can never be configurations of the component. For example,
a simple electrical switch has a state variable, ranging over a two-element domain, depending on
whether the switch is open or closed, and two flow variables indicating the voltage at each of its
two connectors. This example also shows that the values of the flow variables may depend on
the values of the state variables: If the switch is connecting, the voltages at its two connectors
are equal.
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Figure 1: A switch

Therefore, the set of configuration of a component is a subset C' of the cartesian product
S1 X+ x 8, x Fy x---x Fp,. The projection of a configuation ¢ € C is called the observable
part of this configuration. We will see later the important role that these observable parts play
when several components are interacting

An important characteristic feature of the AltaRica model is that the sets of state and flow
values may be infinite, but are always discrete. With this respect, our components are not
hybrid systems. Of course, it may happen that flows are used to represent continuous quantities
like temperatures, pressures, voltages, but since the values of these quantities are accessed only
by sensors, we assume that they are discretized or sampled. Returning to the example of the
switch, we may consider that the voltage has only two discrete values: high and low. Therefore,
the configuration of a component may change only by discrete steps, called transitions. These
transitions are caused by events that are of two kinds.

e local events: they are events that the component knows about, either because they are local
to the component, or they are not local, but the component is sensitive to their occurrences,

e an invisible event, denoted by e: the configuration of the component changes because of an
external event not perceptible by the component.

For instance, if one pushes on the switch, its state changes, and possibly also the voltages. This
is an event that the switch can perceive (it is even one of its roles to perceive this event!). On



the other hand, if the switch is a part of an electrical circuit containing a generator, and if the
generator fails, the configuration of the switch changes because its two voltages turn down to
“low”, but there is absolutely no reason for assuming that the switch has perceived the event
“power failure”: its two voltages have just gone to zero.

Note that whether an event can be perceived by a component or not is by no way a char-
acteristc property of the event but rather one of the component, and indeed it is a part of the
description of a component. For instance, let us assume that a component has a flow variable
representing a pressure and let us consider the event “the pressure goes over a threshold”. This
event can or cannot be detected by the component (if it has or not a pressure sensor, for instance)
and that can make a huge difference.

This leads us to consider, at an abstract level, that a component is a labelled transition
system with some additionnal features

Definition 2.1. (Interfaced transition systems) An interfaced transition system is a 5-tuple
A=(E,0,C,n,T) where

E = E, U{e} is a set of events,

O is a set of observations,

C is a set of configurations,

7 : C — O is a mapping that with each configuration ¢ € C associates its observable part

m(c) € O,

e T CC x E xC is a set of transitions, that contains at least (c, €, ¢) for any ¢ € C.

Example The configuration of the switch of the previous example is a triple of Boolean values
on, f1, fo indicating whether the switch is connecting or not and whether the two voltages f;
and fo are high or low. When on is true, fi and fo must be equal, and when it is false the four
pairs of values for f; and fs are possible, hence the transition systems has six configurations:
two where the switch is connecting and four where it is not. The values of the voltages can be
modified (by e-transitions) without changing the state of the switch. On an occurence of the
event push, the state of the switch changes and there is a transition labelled by this event from
any of the two “connected” configurations to the four others, and vice-versa, as shown in the next
figure where the observable part of a configuration is typeset in italic.
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Figure 2: Switch (on,f1,f2)

Another feature we wish to introduce in our model is a notion of event priority. In some
configurations, one may want to specify that an event is allowed to occur only if there are no
other events with higher priority to deal with first. The interest of this notion of event priority
will appear later on when we consider systems of interacting components.

Definition 2.2. (Interfaced transition systems with priorities) Let £ = E; U {e} be a
set of events. A priority relation on E is a strict partial ordering <g of F such that Va € E,
a £ € and € £g a. This last condition means that the invisible event cannot be related by any
priority relation to any other event. This is natural since it is invisible!

An interfaced transition systems with priority is a tuple B = (E, <g, O, C,w,T) where <g is
a priority ordering and (E,O,C,w,T) is an interfaced transition system.

By resolving priority constraints, one can transform an interfaced transition system with
priority into a interfaced transition system without priority.

Definition 2.3. (Resolution of priority constraints) Let B = (E,<g,O,C,w,T) be an in-
terfaced transition system with priority, and let A be the interfaced transition system (E, O, C,w,T).
The interfaced transition system obtained from B by resolving the priority constraints, denoted
by A [<g, is the interfaced transition system (E,O,C,w,T [<g) where T [<p is the set of all
transitions (c, e,c’) € T that satisfy V¢’ € C,Ve' € E, (c,e/,d"Y e T = eLpe.

To be sure that A [<g is actually an interfaced transition system, we have only to check
that for any ¢ € C, (c,e,¢) € T [<g. This follows from the fact that € is incomparable (w.r.t.
<g ) with any e € E.

One can also remark that if <g is the empty ordering (i.e., there is no priority between the
events), then the resolution of priority constraints is useless: A [<p= A.

3. AltaRica nodes

The AltaRica language allows hierarchical descriptions of systems. Besides the basic compo-
nents, that are interfaced transition systems, there are other components, called AltaRica nodes,



consisting of a set of components (interfaced transition systems or other nodes) interacting under
the supervision of a controller. We define below the “semantics” of a node (i.e., the way it reacts
to some events and how it can potentially exchange information with other components) in terms
of interfaced transition systems. It follows that if a component of a node is another node, we
can substitute it by an interfaced transition system. Hence, we may assume, in the definition of
a node, that all its components are actually interfaced transition systems.

Definition 3.1. (Altarica nodes) An AltaRica node is a tuple
N =(E,<g,0,A, A1,..., An, V)

where:

e F is a set of events partially ordered by <g.

e O is a set of observations.

e Fori=1...n, A; = (E;, 0;,C;, m;,T;) is an interfaced transition system, called a sub-node
as a reminder that it can be the interfaced transition system associated with a node.

Ao = (Ey,Oq,Cy, T, Tp) is an interfaced transition system where Ey = E and Oy =
O x Oy x ---x Oy. It is called the controller of the node N.

V C E} x Ef x ... E! x 207+ is a set of broadcast synchronization vectors. For all i, E}
is the set E; U {e? | e € E; — {e}}. Furthermore, we assume that V always contains the
vector €= (¢, ..., {0}).

3.1. Broadcast synchronization vectors

In several models of communicating systems, an event occuring in one component must be
synchronous with some other events occuring in some other components, for instance when one
of them is just the instantaneous effect in one component of some event occuring in another one
(e.g., push a switch and a bulb lights on), or when a “global” event is by essence a distributed
event that occurs in the form of several synchronized “local” events (e.g., a handshake is when
two persons mutually shake their hands).

Synchronization vectors were introduced in the Arnold-Nivat model to express all kinds of
such synchronizations of events.

However, it turned out that in the systems we have to model, these synchronization vectors
are not expressive enough. For instance, let us consider an electric circuit with several lamps. In
case of an event “power failure”, all the lamps must simultaneously be extinguished. But some of
them are already off and cannot execute “light off”. Of course, it is possible to model this circuit
with synchronization vectors in such a way that in case of power failure only lighted lamps turn
off, but at the cost of a considerable increase of the size of the model.

In the AltaRica formalism we allow the modeller to express something like “in case of power
failure, all lighting lamps light oft” by specifying that if a component is not able to react by the
specified event to another event, it is not obliged to do so.



This is done by tagging this event by a question mark in the synchronization vector. For
example, if we have a synchronization vector (a,b,c?,d?), the possible global events will be
(a,b,c,d), {(a,b,e,d), (a,b,c,e) , and (a,b,e,€). But, for instance, (a,b,¢,d) is forbidden if the
third component has the possibility to react by ¢. On the other hand, (a,¢€,c,d) is always
forbidden.

Finally we introduce an additional constraint to such vectors that concerns the number of
“reacting” components (i.e., those that actually take part in the interactions by not executing the
invisible actions €). In some cases, the interaction expressed by the vector can take place only if
there is a minimal number of “participants”. For instance consider a lift and its event request(i)
that memorizes that it has been requested to stop at floor 4. This can be because this request is
made by somebody inside the cabin who wish to get out at floor ¢ (event out(3)) or by somebody
at floor ¢+ who calls the lift (event call(i)). Then the vector (request(i), out(i)?, call(i)?) with
the constraint {1,2} expresses that request(i) occurs only when at least one of the two requests
out(i) or call(i) occurs simultaneously. In some other cases it could be a maximal number, and
sometimes just a fixed number, like in the rendez-vous “two out of three” expressed by the vector
(ro?,rv?, rv?) with the constraint denoted by {2} to express that two and only two components
have to react by rv in this interaction.

To precisely define the set of possible interactions that are described by a broadcast synchro-
nization vector, we introduce the notion of an instance of such a vector.

Definition 3.2. (Instances of a broadcast synchronization vector)
Let v = (eh,e),...,eh, D) € B x B x ...E} x 2071 We say that u = (eq,e1,...,e,) €

i (%)
Ey x Ey x ... E, is an instance of v if

e forany:=0,1,...,n,

— if el € E; C E; then ¢; = €/,
— if ) = b? with b € E; — {€¢} thene; =bor e; =e.
e the cardinal of the set {i |0 <i < n,e; #¢€} isin D.

We denote by I(v) the set of instances of v and we order it by C, the product of the orderings
C; of E; defined by e C €' if and only if e = € or e = €.
Note that €= (e,¢€,...,€,{0}) has one and only one instance which is (e, €, ..., €).

3.2. Semantics of a node

The semantics of a node N is the interfaced transition system associated with it, as defined
below.

Let N = (E,<g,0, A9, A1,...,An, V) be a node where A; = (E;, 0;,C;,m;,T;), for i =
0,1,...,n, and where Ey = FE and Oy =0 X O1 X -+ X Op.

We denote by ¢, ¢1,-.., ¢, the projections of Oy on O, Oy, ...,0,.

The interfaced transition system A = (E, O, C, w,T) associated with A is defined as follows.



Configurations The set of configurations of A is
C= {(607cla' .- 7cn) €CyxCy X+ xXCp | Vi=1,... ,’I’L,(bi(ﬂ'o(CQ)) = ﬂ-’L(CZ)}

If we interpret the observable part of a configuration as the vector of values of the flow
variables, this definition implies that the value of any flow variable of the sub-node A4; is also the
value of a flow variable of the controller. In other words, the controller has access to the flow
variables of all the sub-nodes, and its set of configurations allows it to impose some relationship
between its own configuration and the configurations of the sub-nodes. Thus, the configurations
of the controller specifies a first kind of interaction between the components of a node, that we
call coordination of interfaces.

Example Consider a turbine fed by a highpressure intake line controlled by a valve. The
turbine has two states: run and stop, and two flow variables, ps equal to 0 or 1, representing the
intake water pressure and wvsg equal to 0 or 1, representing the current produced by the turbine.
The turbine produces current if and only if it is running and is under pressure. Its configurations
are thus (run, p=1, v=1) and (stop, p=0, v=0). The valve also has two states, open and closed,
and two flow variables p; and po equal to 0 or 1, representing their incoming and outgoing
pressures of the valve. If the valve is open then p; = po and if the valve is closed then po = 0. Its
configurations are thus (open, p1=1, pa=1), (closed, p1=1, po=0), (open, p1=0, po=0), (closed,
P1 :0, P2 =0 )

The intake line with its valve and its turbine is described by a node whose sub-nodes are the
valve and the turbine and whose controller describes the interactions between the valve and the
turbine. It has no state variables. Its flow variables are those of the sub-nodes: pi, p2, p3, v3
and those of the node itself: a variable p representing the pressure upstream of the line, and a
variable v representing the current obtained on output. The configurations of the controller are
the assignments to these variables that satisfy the constraints p = p1, p2 = ps, v3 = v explained
by the drawing below.

valve P2 | Ps turbine

The configurations of the node are thus the following.

p=p1 | valve | po = p3 | turbine | v3 = v
1 open 1 run 1
1 closed 0 stop 0
0 open 0 stop 0
0 closed 0 stop 0

Observations The mapping 7 : C — O is defined by w(cg,c1,-..,¢n) = ¢(mo(cp)). In other
words, the observable part of the configuration of the node is the restriction to O of the observable
part of the configuration of the controller.



Transitions We have seen above that the controller has access to the flow variables of the
sub-nodes. It follows that if the configuration of a sub-node is modified by a transition, it may
happen that the configuration of the controller is simultaneously modified and thus the controller
has also simultaneously executed a transition. Conversely, if the configuration of the controller
is modified by a transition, then the configurations of some of the sub-nodes may have changed.
Therefore a transition of the node consists of a vector of simultaneous transitions of the controller
and all the sub-nodes (possibly some of them are the special transition (c,¢,c).) However, due
to the constraints between flow values expressed by the set of configurations of the controller,
not every such vector is firable. Moreover the set T of executable “global” transitions is further
restricted by synchronization constraints expressed by the synchronization vectors.

This set T of transitions is defined in four steps.

First step. Let W = J,cy I(v) X {v}. Let Tc € C x W x C be defined by

<(CO’Cla v ,Cn)a (605617' . ,en,v), (CB,CII,. .- 7C;L)> € Tc

if and only if for any ¢ between 0 and n, (¢;, e;,c;) € T;. Clearly, (c, (¢, ..., € €),c) € T, for any
ceC.

Second step. We equip W with the strict partial order <y defined by (u,v) <w (u',v") if
and only if v = v/ et u C «'. Then we set Tg = T¢ [<w. This step means that when several
instance of the same vector are firable, we choose one where a maximal number of components
react. We still have for any ¢ € C, (c, (€, ..., €,€),¢c) € Tp.

Third step. Let T4 C C x E x C such that {(c,e,c’) € T4 if and only if there is w =
(eg,€1,--.,v) € W such that e = eg et (¢, w, ) € Tp. Still, for any ¢ € C, {(c,¢,c) € Ty.

The last step is to take T' = Ty [<g. This step amounts to the following. When two global
transitions are firable in a configuration of a node, the controller has the possibility of selecting
one of them according to the priority relation on FE, of course to the extent that it is involved in
these transitions by one of its events.

Example Counsider a spigot that ought to be closed to prevent the bathtub from overflowing.
We suppose therefore that the spigot is in the state open and passes to the state closed using
a transition caused by the event close-me. The event “the controller closes the spigot” is noted
f1, and will be synchronized with the event close-me by means of the synchronization vector
(f1, close-me). However it might be that the bathtub spigot is stuck in a state blocked-open and
it is impossible to close it. To avoid an overflow, the controller has another solution: close the
incoming feed spigot at the water meter. This event, noted fs, has no effect on the bathtub
spigot, giving the synchronization vector (fo,¢€).

After the three first transformations shown above, we obtain the following transitions, ignor-
ing those configurations of the controller that are unnecessary to describe here.

e (open, fi1, closed),
e (open, fa, open),



e (blocked-open, fa, blocked-open).

In the last two cases the bathtub does not overflow, even if the spigot remains open, since the
feed was closed. Nonetheless we can consider that if the bathtub spigot works, it suffices to close
it and it is not necessary to close the feed. To express this additional condition, it suffices to give
f1 a higher priority than fs. In this case, after the final step of the definition of T', there remain
only two transitions

e (open, fi1, closed),
e (blocked-open, fa, blocked-open).

3.3. Controller

As we have seen above, the component Ay of a node controls and coordinates its sub-nodes in
three different ways:

e by sharing with each sub-node A; the set O; of observations,

e by interacting synchronously with the sub-nodes as described by the broadcast synchro-
nization vectors,

e by assigning priorities to the events it synchronizes.

This gives the controller a very important role in a node. Some examples were already
given. Here we give another example that shows how a controller may reconfigure a system on
occurences of failures. It is a typical example of the systems that we have to model, and for
which the AltaRica formalism was specially designed.

Let us consider a supervisor S that reads its input flow value v and reports a flow value w
that represents a status of the input value, so that v and w are related by a functional relation
w = f(v). This supervisor is a complex mechanism that can become faulty by the failure of
one of its components and in this case its status value is no longer related to the input value.
Therefore, this supervisor has two states OK and notOK and passes from the first to the second
one (whatever the flow values are) by a transition caused by the event failure. Its configurations
are defined by the following constraint: If the state is OK then w = f(v).

As usual in this kind of situation the system contains a second supervisor S’ that can be used
instead of S in case of failure of S. Switching from S to S’ is performed by a controller that can
perceive the failure of S by an event S fails that is synchronized with the failure of S by the
synchronization vector (S_fails, failure,€). This controller has two states S OK and S_notOK
and the event S fails makes it go from the first state to the second one, whatever the flow values
are. Its flow variables are V representing the input value to be supervised, W representing the
status of the input value, and the flow variables S.v, S.w, S”.v, S’.w of the two supervisors S and
S’

The configurations of the controller are defined by the following constraints

e V = S.w = 5".v that means that the two supervisors read the same input value.
e If the state of the controller is S OK then W = S.w. If it is § notOK then W = S".w.



It follows that if S is OK, W = f(V). If S is not OK and if §' is OK, still W = f(V).
Obviously, there is a problem if the two supervisors are faulty! However if the controller is
able to perceive the failure of the second supervisor, it can know about such a situation and be
informed that the value of W is then meaningless.

4. Bisimulations

In the definition of an AltaRica node, we have emphasized the fact that the states of a sub-node
are anonymous: the only information a node has about its sub-nodes is the value of the flows.
In this section we formalize this point by defining a notion of bisimulation consistent with the
hierarchical construction of nodes: if we substitute for a component of a node (the controller or
a sub-node) an equivalent component (with respect to this bisimulation), then the two nodes are
still equivalent.

In an interfaced transition system A = (E, O, C,w,T), the observation m(c) € O assigned to
the configuration ¢ can be seen as a property of this configuration. An interfaced bisimulation
will be a bisimulation that preserves these properties. Indeed, as explained in [Arn94], it is
sufficient to define bisimulation relations that are also transition system homomorphisms.

Definition 4.1. (Interfaced bisimulation homomorphisms) Let A = (E,0,C,n,T) and
A" =(E,0,C", 7', T") be two interfaced transition systems having the same sets of events and
observations. An interfaced bisimulation homomorphism h : A — A’ is a mapping h : C — C'
that satisfies:

(b0) h is surjective,

(b1) for any ¢ € C, 7(c) = 7' (h(c)),

(b2) for any (c1,e,c2) €T, (h(c1),e,h(c2)) € T,

(b4) for any ¢; € C,c, € C', if (h(c1),e,cy) € T' then there is c2 € C such that h(cp) = ¢, and
(c1,e,c0) €T.

Proposition 4.1. If h : A — A’ is an interfaced bisimulation homomorphism from A to A’ it
1s also an interfaced bisimulation homomorphism from A [<g to A’ [<g .

Proof Let A= (E,0,C,w,T) and A" = (E,0,C",«',T"). We have to show

1. (c1,e,c0) €T 1<p= (h(c1),e,h(c)) €T [<g,
2. if (h(c1),e,ch) € T' |<g then there is co € C such that h(ce) = &, et (c1,e,¢2) €T [<g

1) Let (c1,e,¢2) € T |<g. Then (c1,e,¢c2) € T hence (h(c1),e,h(c2)) € T'. Let us assume
that (h(c1),e,h(ce)) ¢ T' |<g. By definition, there exists ¢/ >p e and ¢ € C' such that
(h(c1),e,c') € T'. But, by (b4), there is ¢ € C such that h(c) = ¢ and (c1,€',¢) € T. It follows
that (c1,e,c2) ¢ T [<g, a contradiction.

2) Let (h(c1),e,ch) € T' [<g. Then (h(c1),e,ch) € T' and there is c; € h™1(c}) such that
(c1,e,c0) € T. If {c1,e,c2) ¢ T |<g, there exists ¢’ >g e and ¢ € C with (c1,€/,¢) € T. But
then, (h(c1),€', h(c)) € T' that implies (h(c1),€',h(c)) ¢ T' |<g, a contradiction. a



If in a node, we replace the controller Ay, whose semantics is Ag, by a component N whose
semantics Aj is the image of A¢ under an interfaced bisimulation homomorphism, the semantics
of the node is unchanged up to bisimulation. The same result holds for the sub-nodes.

Proposition 4.2. Fori=0,1,...,n, let h; : A; = (E;, 0;,Ci, 7, T;) —» A, = (E;, 0;,Cl,w}, T))
be an interfaced bisimulation homomorphism. Let ¢; be the projection from Oy on O;. Let A =
(E,0,C,m,T) be the controlled product (E,<g,O0; A, A1,...,An, V) and A' = (E,0,C", ', T")
be the controlled product (E,<pg,0; Ay, Al,..., AL, V). We have m = ¢ oy and " = ¢ o m
where ¢ is the projection of Oy on O. Let h=hgx hy X --- X hy : C — C'. Then h: A— A’ is

an interfaced bisimulation homomorphism.

Proof First of all, let us remark that h : C — C' is surjective. If (cp,c},...,cl,) € C’, then
di(my(cp)) = mi(ch). Since the h; are bisimulations, there exist ¢; such that hi(c;) = ¢ and
mi(ci) = mi(ck). Thus, ¢i(mo(co)) = mi(ci) and (co, c1,-..,¢,) € C.

It is obvious that m({co,c1,...,cn)) = ¢(mo(co)) = d(my(ho(co))) = ' (h(({co,¢c15---,cn))))

The proof that b : A — A’ satisfies (b3) and (b4) follows the four steps of the construction
of T and T'.

It is easy to see that h : (E,0,C,w,T¢) — (E,0,C',n',T}) satisfies (b3) and (b4). By
Proposition 4.1, these properties are satisfied also by h : (E,O0,C,n,Tg) — (E,0,C', ', T}).
For the third step, it is enough to notice: 1) (c,eq,c') € T4 = {(c,(eg,€1,...,6n,v),c') € Tg =
(h(c), (eo,€1,-.-,en,v),h()) € T = (h(c), e, h(c)) € TY.

2) (h(c),eo,c") € Ty = (h(c),(eo,e1,-..,€n,v),c") € Ty and there is ¢’ such that h(c') =
" and (c,(eg,€1,-..,6€n,v),c) € Tp, hence (c,ep,c') € Ty. For the last step, we again use
Proposition 4.1. [l

Example A two-way switch has two states: up and down, and three voltages: f1, fo, and f3.
When the switch is up we must have fi = f3, and fi = fo when it is down.

The flow variables can be modified by e-transitions, without changing the state. The event
push causes a transition from a configuration where the state is up to a configuration where the
state is down and vice-versa (see Figure 4).

£3
(A

Figure 3: a two-way switch

Now we define a system consisting of two two-way switches S1 and S2 whose flow variables
are renamed as indicated below and connected together as explained in the following figure.

This connection is expressed by a controller with one state and 8 flow variables that has
2% = 16 configurations.

Moreover the event push of the controller is synchronized with a push in one and only one of
the two switches by the vector ( push, push?, push?, {2}).
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Figure 4. Two two-way switches

The configurations of the node are the following.
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Its transitions are given by the following diagram.
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Figure 5: SwitchSystem
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It is easy to see that the system of Figure 2 is the homomorphic image of the above transition
system under the mapping h defined by the following table, and that this mapping is an interfaced
bisimulation homomorphism.

ddTTTT
ddTTFT
uwuTTTT
uwuIFTT
uuFTFF
uuFFFF
ddFFTF
ddFFFF
udTTTT
duTTTT
udFFFF
duFFFF
udTFTF
duTTFF
udFTFT
duFFTT

TTT

TFF

FTT

FFF

FTF

FFT




5. Conclusion

Of course, the description of a system with the AltaRica formalism is done by using a concrete
syntax [GLP198]. Actually, this concrete syntax imposes some minor restrictions on the AltaRica
components and nodes that can be written with it.

However, one of these restrictions, that concerns the way the transitions are described, is
very important from a pragmatic viewpoint. We have not still mentioned it, not to make heavy
the above presentation, but all the given examples satisfy this restriction.

Indeed a configuration C' is a set of assigments of values to state and flow variables. If we
denote by S the set of assigments to state variables and by F' the set of assigments to flow
variables, C' is a subset of S x F'. The observable part of a configuration c is its projection 7 (c)
on F. We call its projection mg(c) on S its state part.

The additional constraint is that a transition directly modifies only the state part of a config-
uration. If the observable part of the configuration is also modified by the transition, it is because
the constraints that define the set of configurations of the component may oblige a change of the
observable part when the state part changes.

More formally, the set T' of transitions of a component whose the set of configurations is C
satisfies the following property.

If ¢ and " are two configurations of C' with the same state part (i.e., 7g(¢') = mg(c") )then

o (d,e,c") and (",e,c) are in T,
e if for some c € C, (c,a,c') is in T, then (c,a,c") is also in T'.

Indeed this restriction is not a real one: it is always possible to duplicate some flow variables
by state variables. Let C C S x F x F'. We define C' C S x §' x F x F', with §' = F'
by (s,s', f,f') € C"if and only if s’ = f' and (s, f, f') € C. Therefore, if ¢ and ¢" are two
configurations of C' that have the same state part (i.e., mg(c') = wg(c") and 7g (') = wg (),
we also have wp (') = mpr ().

However, it turned out that a clear distinction between the roles of state and flow variables
is a valuable guideline when one has to formally describe a complex system.

This concrete syntax is the basis for several tools for handling descriptions in this formalism
(simulation, verification, risk analysis) that are currently under development. It is clear that a
single formalism without any tool to exploit it is of low interest.
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